

ARM-N8-SIGFOX

Transceiver • Narrowband • 14dBm • UART/SPI •

Sigfox™

Transparent / bridge

Ultra Low Power

DEPUIS LA REVISION 5834 DU 22/04/2016, LES MODULES ARM-N8-LP/LD SONT REPARTIS EN PLUSIEURS BUILDS.

BUILD SIGFOX : REV 5xxx SUR MODULE ARM-N8-SIGFOX

BUILD LOCAL : REV 8xxx SUR MODULE ARM-N8-LP/LD

LES DIFFERENTS BUILDS
SONT COMPATIBLES
ENTRE EUX SOUS
CERTAINES
CONDITIONS ET
POSSEDENT CHACUN
UN GUIDE
D'UTILISATEUR UNIQUE.

Technical features

Dimensions	30 x 18 x 2,5 mm (25 pins)
Radio Regulation	EN 300 220 V2.4.1
Operating Temp	-30°C to +70°C
Modulation	2GFSK/4GFSK
Sensitivity	-122dBm @1,2kbps BER10 ⁻³
Range	>20 km (FEL)
Frequency	863 – 870 MHz
Output power max	25 mW (14 dBm)
Data rate	100 bit/s to 57,6 Kbit/s
Radio consumption (Tx)	60 mA (14dBm)
Sleep consumption	1,5 μΑ
Radio consumption (Rx)	26 mA
Interface (max)	UART (0,2MHz)/SPI (1,3MHz)
Setup	AT cmds / SPI cmds
Features	LBT, AFA, FastUARTwakeUp,
	WakeOnRadio

SMD Mounting

1 TABLE DES MATIERES

Technical features	1
2 Généralités	4
2.1 Présentation	4
3 Versions disponibles	5
3.1 Famille ARM et famille ACW	5
4 Aspects règlementaires	6
4.1 Déclaration de conformité	
4.2 Atmosphère explosive	
4.3 Modification	
5 Réglementation radio	7
5.1 Contexte	7
5.2 Information sur la réglementation de la conformité	
6 Caractéristiques techniques	9
6.1 Dimensions	
6.2 Brochage	
6.4 Interfaces de liaison	
6.5 Mise à jour firmware	
6.6 Caractéristiques RF	
6.8 Mémoire	
7 Intégration hardware	13
7.1 Alimentation	
7.2 Adaptation d'impédance de la piste d'antenne7.3 Empreinte et plan de masse	
8 Paramétrage par commandes AT	
9 Modes Tests ARM	
9.1 Lecture Version et Identifiants (ATV)	
9.2 Lecture VDD (ATP)	
10 Modes Tests Sigfox	16
10.1 Emission de porteuse pure par AT\$CW	
10.2 Envoi de message vers Sigfox	
11 Interfaces	
11.1 Sélection	
11.3 Mode UART	
11.3.1 Configuration UART (en jaune : par défaut)	18
11.4 Mode SPI	
11.4.2 Fonctions	
11.4.1 Lecture Registre AT	21
11.4.2 Ecriture Registre AT	
11.4.3 Obtenir longueur du message radio courant	
11.4.5 Fournir octets dans buffer radio	21
11.4.6 Réinitialisation	21
12 Modes de fonctionnement	22

1		Transparent (SERIAL/RF BRIDGE)			
	12.1				
	12.1				
	12.1	1 / /			
1		Sigfox Uplink			
	12.2	J			
	12.2	5 I · ·			
	12.2				
	12.2	<u> </u>			
	12.2	5			
	12.2	3			
	12.2	.7 Envoi d'une trame de vie	∠0		
13	Parti	e radio27	7		
1	3.1	Paramètres principaux (par défaut : en jaune)	27		
		Header			
		Adresses			
		Canaux radio			
		Whitening			
		Listen before talk (LBT)			
		Adaptative Frequency Agility (AFA)			
1		Répéteur			
14	Mod	es veille32	<u>)</u>		
1	4.1	Sources de réveil / veille	32		
		Fenêtre de réveil			
		Conditions d'entrée et de sortie de veille			
15	Réve	eil par radio (WOR - Wake On Radio)34	ŀ		
1	5.1	Principe de fonctionnement	34		
1		Méthodes de réception en WOR			
1	5.3	Traitements post-WOR	35		
1	5.4	Evènements de réveil (exemple)	36		
16	Sign	alisations38	3		
17	Cour	rant mesuré à 3,3V39)		
18	Optir	misation du courant consommé40)		
	. Mise à jour du firmware par bootloader41				
-	9.1	Versions	41		
		Utilisation de Upgrader.exe			
20	Tabl	eau des fréquences42	<u> </u>		
21	Tabl	eau des registres AT56	;		
22	Historique du document				

2 Généralités

2.1 Présentation

Ce guide contient les informations permettant la mise en œuvre rapide des modems radio ARM. Pour tout support technique, veuillez contacter votre revendeur spécialiste.

Les modems radio ARM sont fabriqués conformément à l'état de la technique actuelle et dans le respect des règles de sécurités reconnues et en vigueur dans le code du travail.

Les prescriptions générales de sécurité doivent être respectées durant toutes les phases d'utilisation et de réparation de l'équipement. Le non-respect des règles ou des avertissements écrits dans ce manuel est contraire aux prescriptions de sécurité d'utilisation et de fonctionnement normal des modems radio ARM.

En tant qu'utilisateur de ce produit, il est nécessaire de suivre rigoureusement, dans votre environnement de travail, toutes les mises en garde et prescriptions nécessaires pour effectuer des opérations sans risque sur les modems radio ARM.

Assurez-vous de lire ce manuel entièrement avant de mettre en fonctionnement un modem radio ARM.

Le but d'un modem radio est de remplacer une liaison câblée en établissant une communication RF (Radio Fréquence) entre 2 ou plusieurs points distants. Le modem radio ARM répond à une demande forte dans ce domaine en offrant d'excellentes performances en terme de portée et de compatibilité

3 Versions disponibles

3.1 Famille ARM et famille ACW

Depuis 2014, la famille de produits ARM (Advanced Radio Modem) a été remplacée par la famille de produits ACW (Atim Cloud Wireless). Les modules ARM-Nano ont permis la transition ARM vers ACW en assurant la compatibilité au niveau RF.

Les commandes AT de l'ancienne gamme ARM-U8 ou ARM-C8 ne sont plus syntaxiquement compatibles avec les modules ARM-Nano (les adresses des registres AT restent cependant compatibles).

La gamme de produit NANO se décline en plusieurs versions pour deux fréquences disponibles (N4 : 433MHz, N8 : 868MHz) :

- Nx LP : module Low Power (PIRE = 14dBm)
- Nx LD: module Long distance (PIRE = 27dBm)
- Nx LW: module Lora Wan (PIRE = 14dBm)

4 Aspects règlementaires

4.1 Déclaration de conformité

EN 300 220-1 V2.4.1

EN 300 220-2 V2.4.1

EN62311:2008

EN61000-6-2: 2005

EN301489-3 V1.4.1

EN301489-1 V1.9.2

Il est de la responsabilité de l'utilisateur d'être sûr que la configuration et l'utilisation du module ARM-N8 remplissent toutes les conditions 70-03 de la REC (décrivant l'annexe 1, les bandes de fréquences, g, G1, G2, G3 ou G4).

4.2 Atmosphère explosive

Ne pas utiliser les modems radio ARM en présence de gaz inflammable et de fumées. L'utilisation de l'équipement dans cet environnement constitue un danger.

4.3 Modification

Avant d'intégrer/souder le modem ARM-N8, il doit être complètement déconnecté du réseau d'alimentation secteur. Il est interdit de remplacer les composants avec le câble d'alimentation raccordé.

4.4 Environnement

Ne pas faire fonctionner le modem ARM-N8 dans un environnement non contrôlé où la température est inférieure à -20°C ou supérieure à +70°C; cela endommagerait l'équipement. Tenir l'équipement éloigné de toute humidité, ne pas verser de liquide sur l'équipement. L'utilisation du modem radio ARM est destinée uniquement en intérieur, à une altitude inférieure à 2000 mètres.

Elimination des déchets par les utilisateurs dans les ménages privés au sein de L'Union Européenne.

Ce symbole sur le produit ou sur son emballage indique que ce produit ne doit pas être jeté avec vos autres ordures ménagères. Au lieu de cela, il est de votre responsabilité de vous débarrasser de vos déchets en les apportant à un point de collecte désigné pour le recyclage des appareils électriques et électroniques. La collecte et le recyclage

séparés de vos déchets au moment de l'élimination contribuera à conserver les ressources naturelles et à garantir un recyclage respectueux de l'environnement et de la santé humaine. Pour plus d'informations sur le centre de recyclage le plus proche de votre domicile, contactez la mairie la plus proche, le service d'élimination des ordures ménagères ou le magasin où vous avez acheté le produit.

5 Réglementation radio

5.1 Contexte

Les modems de la famille ARM et ACW font partie des radiocommunications utilisant les bandes ISM (Industrie Scientifique Médical) qui peuvent être utilisées librement (gratuitement et sans autorisation) pour des applications industrielles, scientifiques et médicales.

De ce fait une régulation au niveau national et mondial est réalisée dans le but de contrôler les problèmes causés par les interférences et la saturation des bandes de fréquence. Au niveau national, la législation est assurée à la fois par l'ANFR (agence nationale des fréquences) et l'ART (Autorité de Régulation des Télécommunications). L'ANFR, créée en 1996, élabore et édite le tableau national de répartition des bandes de fréquence qui s'appuie sur le règlement de radiocommunication élaboré dans le cadre de l'UIT.

Concernant le domaine des applications civiles, les conditions d'utilisation sont fixées par l'ART qui décide de l'attribution des fréquences selon une planification. La planification consiste à faire un découpage par région dans lesquelles est établi un découpage par bande. Ensuite sont définis les services de radiocommunications dédiés ainsi que la liste des exploitants ou opérateurs. Une distinction par catégorie est faite, on y trouve les ministères (Défense, Recherche, Intérieur), l'ART et le CSA.

5.2 Information sur la réglementation de la conformité

L'utilisation de fréquences radio est limitée par les réglementations nationales. Les modules radios sont conçus pour se conformer à la directive R&TTE (Radio & Telecommunications Terminal Equipment) 1999/5 / CE de l'Union Européenne, et peuvent être utilisés librement dans le Union Européenne. Néanmoins, les restrictions concernant la puissance RF ou le duty-cycle peuvent s'appliquer. L'ARM-N8 est un module radio conçu pour être incorporé dans d'autres produits (appelés aussi «Produits finis»). Selon la directive R&TTE, la déclaration de conformité avec exigences essentielles de la directive R&TTE est de la responsabilité du fabricant du produit final. Une déclaration de conformité pour le module radio est disponible à ATIM sur demande. Les exigences réglementaires applicables sont sujettes à changement. ATIM ne prend part à aucune responsabilité de l'exactitude et la précision des informations précitées. Les lois et règlements nationaux, ainsi que leur interprétation peuvent varier en fonction du pays. En cas d'incertitude, il est recommandé de consulter les autorités locales.

Figure 1: Utilisation des bandes ISM dans le monde

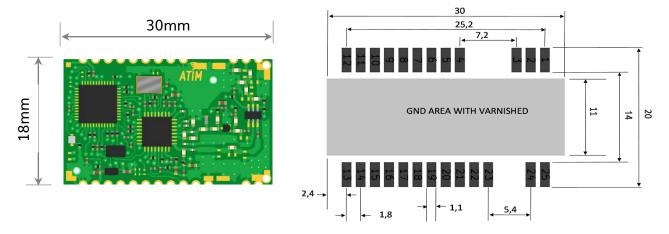

Fr	equency Band	Power/Magnetic Field	Spectrum access and mitigation requirements	Modulation/ maximum occupied bandwidth	ECC/ERC Decision	Notes
		25 mW e.r.p.	≤ 0.1% duty cycle or LBT (notes 1 and 5)	≤ 100 kHz for 47 or more channels (note 2)		FHSS
g1	863-870 MHz	25 mW e.r.p. Power density: -4.5 dBm/100kHz (note 7)	≤ 0.1% duty cycle or LBT+AFA (notes 1, 5 and 6)	No spacing		DSSS and other wideband techniques other than FHSS
	(notes 3 and 4)		≤ 0.1% duty cycle or LBT+AFA (notes 1 and 5)	≤ 100 kHz, for 1 or more channels modulation bandwidth ≤ 300 kHz (note 2)		Narrow /wide-band modulation
g1.1	868-868.6 MHz (note 4)	25 mW e.r.p.	≤ 1% duty cycle or LBT+AFA (note 1)	No spacing, for 1 or more channels (note 2)		Narrow / wide-band modulation. No channel spacing, however the whole stated frequency band may be used
g1.2	868.7- 869.2 MHz (note 4)	25 mW e.r.p.	No spacing, for 1 or more channels (note 1) No spacing, for 1 or more channels (note 2)		Narrow / wide-band modulation. No channel spacing, however the whole stated frequency band may be used	
g1.3	869.4- 869.65 MHz	500 mW e.r.p.	≤ 10% duty cycle or LBT+AFA (note 1)	No spacing, for 1 or more channels		Narrow / wide-band modulation The whole stated frequency band may be used as 1 channel for high speed data transmission
g1.4	869.7-870 MHz (note 11)	<u>5 mW e.r.p.</u> 25 mW e.r.p.	No requirement ≤1% duty cycle or LBT+AFA (note 1)	No spacing for 1 or more channels		Narrow / wide-band modulation. No channel spacing, however the whole stated frequency band may be used

Tableau 1: bandes de fréquences applicables dans la bande 868 MHz pour "Dispositifs non spécifiques à courte portée" spécifiées dans la Recommandation ERC 70-03, [2].

6 Caractéristiques techniques

6.1 Dimensions

Pour les modules ARM-Nx-LD ou Nx-LP, Nx-LW, les dimensions sont similaires.

6.2 Brochage

PIN	NAME	I/O	FUNCTION
1	AGND	1	MASSE
2	ANTENNA	1	SIGNAL RF
3	AGND	1	MASSE
4	AGND	-	MASSE
5	OSC1	1	ENTREE QUARTZ
6	OSC0	1	ENTREE QUARTZ
7	MOSI	1	PORT SPI SLAVE DATA IN
8	!SS	1	PORT SPI SLAVE CHIP SELECT
9	MISO	0	PORT SPI SLAVE DATA OUT
10	SCLK	1	PORT SPI SLAVE CLOCK
11	SMSG	0	SORTIE MESSAGE RADIO EN ATTENTE
12	DGND	1	MASSE
13	DGND	1	MASSE
14	VDD	1	ALIMENTATION
15	INT0	1	ENTREE INTERRUPTIBLE / REVEIL
16	U1CTS	1	CLEAR TO SEND UART
17	U1RTS	0	REQ. TO SEND UART
18	U1RX	1	RX UART
19	U1TX	0	TX UART
20	RSSI	0	SORTIE ANALOGIQUE ou NUMERIQUE
21	AN0	1	ENTREE ANALOGIQUE
22	RESET	1	ENTREE RESET MCU
23	AGND	-	MASSE
24	AGND	-	MASSE
25	AGND	-	MASSE

6.3 Caractéristiques électriques

		Min.	Тур.	Max.
Alimen	3V	3,3V	3,6V	
Consommation à 3,3V	Tx / 25mW	-	50mA	60mA
	Rx	-	31mA	45mA
	Veille	0,4μΑ	1μΑ	2,5μΑ
Tension d'entrée		GND	-	0,2 x VDD
Tensio	0,8 x VDD	-	VDD	

6.4 Interfaces de liaison

- UART 2 Fils + contrôle de flux par RTS/CTS (1200 230400 bps)
- SPI Esclave (≤2MHz)
- 1 entrée réveil
- 1 sortie digitale « signalisation »
- 1 entrée analogique 12 bits (option)
- Modes de fonctionnement :
 - ✓ Mode transparent « UART/RF bridge » ou « SPI/RF bridge »
 - ✓ Mode Modbus Esclave
 - ✓ Mode Modbus Maitre (sur cahier des charges)
 - ✓ Mode répéteur
 - ✓ Mode paramétrage « AT » local et distant
 - ✓ Modes tests : Ping-pong, Porteuse pure, Réception continue, Lecture RSSI

6.5 Mise à jour firmware

Le micro logiciel interne aux modules ARM-N8 peut être mis à jour par logiciel ds30Loader (compatible Windows/Mac/Linux) via UART. Le fichier firmware est disponible sur demande.

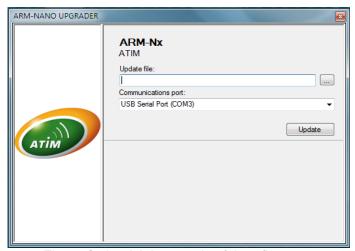


Figure 2 : Logiciel pour mise à jour firmware

6.6 Caractéristiques RF

N8: 863 – 870MHz: 553 canaux disponibles (en bande étroite)

Les modules ARM-Nx sont, de base, réglés sur le canal 869.525MHz (canal 522 / 0x020A) au débit de 1200bps.

									naux à n / 25mW
Mode	Datarate (bps)	Nb de symboles modulés (GFSK)	Bande étroite	Rejection adjacent channel (N-1/N+1)	Rejection alternance channel (N-2/N+2)	Blocking at +/-1 MHZ, +/-2 MHz, +/- 10 MHz	Sensibilité en dBm (BER @10-3)	Nombre de canaux	Portée mesurée à 3m du sol
	1200	2	OUI	-48dBc	-48dBc	-48dBc	-123	553	NC
	4800	4	OUI	-43dBc	-43dBc	-43dBc	-119	553	NC
	19200	4	NON	-41dBc	-41dBc	-42dBc	-116	180	NC
	57600	4	NON	-40dBc	-30dBc	-46dBc	-112	88	NC

La portée est effectuée à 3m du sol avec des antennes de ½ onde.

6.7 Délais

		Délais
Démarrage	lent (avec bootloader)	3s
Démarrage	rapide (sans bootloader)	20ms
Bufferisation des caractères UART		2μs
Emission caractères UART >> RF	Mode packetisé	3 x Toctet après dernier caractère UART reçu
Emission caracteres UART >> RF	Mode infini	immédiat après premier caractère UART reçu
	Mada application	immédiat après réception dernier octet de
Réception caractères RF >> UART	Mode packetisé	trame RF
	Mode infini	immédiat après réception du préambule
Temps de retournement radio	(Tx-Rx ou Rx-Tx)	30µs
Entrée en paramétrage	(commandes AT)	immédiat après réception '+++'
Sortie paramétrage	(commandes AT)	120ms après réception commande 'ATQ'
Entrée en mode veille	'0' sur pin INT0	10ms après fin activité radio
Sortie du mode veille	'1' sur pin INT0	10ms

6.8 Mémoire

Fonction	Type Mémoire	Emplacement	Capacité (octets)
Bootloader + Firmware + Numéro de série	Flash	MCU	32k
Sauvegarde paramètres AT	EEPROM	MCU	512
Buffer Série Rx	RAM	MCU	512
Buffer Série Tx	RAM	MCU	256
Buffer Radio Rx	RAM	MCU	128
Buffer Radio Tx	RAM	MCU	128
Backup - Sauvegarde spécifique (sur cahier des charges)	Flash	Externe	2M

7 Intégration hardware

7.1 Alimentation

L'alimentation des modules est comprise entre 2,7V et 3,6V. Pour garantir un filtrage correct de l'alimentation le filtre LC Figure 3 doit être mis en place au plus proche de la pin VDD.

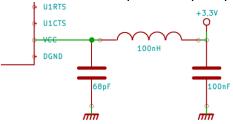


Figure 3: filtre d'alimentation

7.2 Adaptation d'impédance de la piste d'antenne

Les composants passifs à intégrer entre l'antenne et la pin RF du module ARM-Nx dépendent de la longueur de piste, du diélectrique et de l'antenne choisie. Pour une mise en œuvre rapide, un condensateur série de 68pF peut être utilisé. Les autres composants sont optionnels et n'ont pas besoin d'être câblés.

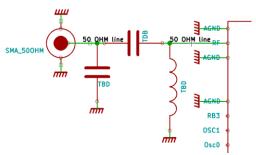
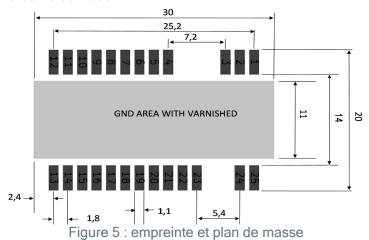
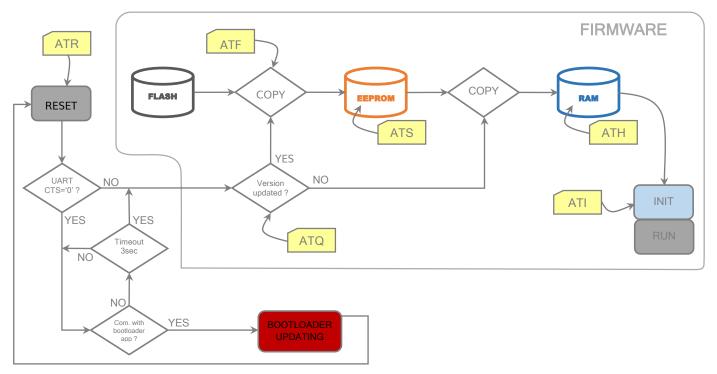



Figure 4: adaptation d'impédance

7.3 Empreinte et plan de masse

Il est recommandé de recouvrir toute la surface sous le module ARM-Nx d'un plan de masse. Cette surface doit ensuite être vernie pour éviter tout court-circuit. Il est fortement déconseillé de faire apparaître des vias dans cette surface.

8 Paramétrage par commandes AT


La liaison UART est, de base, au format 19200bps, 8 bits de données, pas de parité, 1 bit de stop, sans contrôle de flux.

L'entrée en mode commandes AT se fait par :

- > envoi de 3 caractères '+' consécutifs : méthode manuelle de 3 '+' individuels via terminal. En mode transparent, cette méthode engendre l'émission des deux premiers '+' par radio.
- > envoi de 3 caractères '+' concaténés : méthode par trame de 3 '+'. En mode transparent, cette méthode n'engendre pas l'émission de '+' par radio.

La mémorisation des paramètres est instantanée et s'applique après reset, ON/OFF, ATR, ATQ. Pour une configuration à chaud (sans écriture en EEPROM), il convient d'utiliser les commandes ATH puis ATI pour effectuer la réinitialisation avec les nouveaux paramètres.

Commande	Fonction
+++	Entrer en commandes AT
ATQ + ENTER	Sortir des commandes AT
ATR + ENTER	Reset du MCU
ATI + ENTER	Réinitialisation du MCU
ATS'XXX' + ENTER	Lecture EEPROM du registre SXXX. XXX valeur décimale
ATS'XXX'='YY' + ENTER	Ecriture EEPROM du registre SXXX. XXX valeur décimale, YY valeur hexadécimale
ATH'XXX' + ENTER	Lecture RAM du registre HXXX. XXX valeur décimale
ATH'XXX'='YY' + ENTER	Ecriture RAM du registre HXXX. XXX valeur décimale, YY valeur hexadécimale
ATF + ENTER	Réinitialisation paramètres d'usine
ATV + ENTER	Version du modem
ATL + ENTER	Liste des registres ATS

9 Modes Tests ARM

Cmde	Fonction
+++	Entrer en commandes AT

9.1 Lecture Version et Identifiants (ATV)

U. 5832 S/N: 000BE508 SFX 868MHZ 14DBMCR4F

Cette commande renvoie :

- version de firmware (REV.xxxx)
- identifiant Sigfox (S/N: xxxxxxxx)
- bande de fréquences d'utilisation et puissance maximale de sortie RF

9.2 Lecture VDD (ATP)

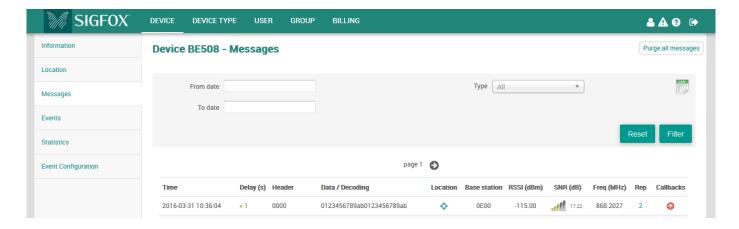
Ce mode renvoie la mesure courante de Vdd.

10 Modes Tests Sigfox

Pour entrer en mode commandes, il suffit d'entrer +++ consécutivement sans délais. Le modem répond alors ARM-N8 - WELCOME IN SETUP MODE - .

10.1 Emission de porteuse pure par AT\$CW

Dans le cadre d'une validation RF du modem, il est possible d'émettre une porteuse pure par le biais de :


AT\$CW=1

La fréquence de la porteuse est celle du canal paramétré dans les registres ATS002-003. AT\$CW=1 active l'émission alors que AT\$CW=0 la désactive.

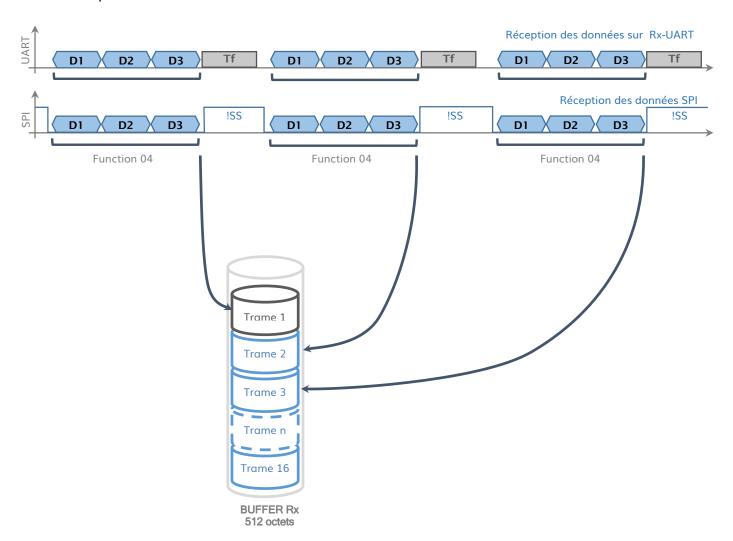
10.2 Envoi de message vers Sigfox

L'envoi du message 0123456789AB se fait par :

AT\$SF=0123456789AB0123456789AB,0 et validé par appui sur « Entrée » (CR/LF)

11 Interfaces

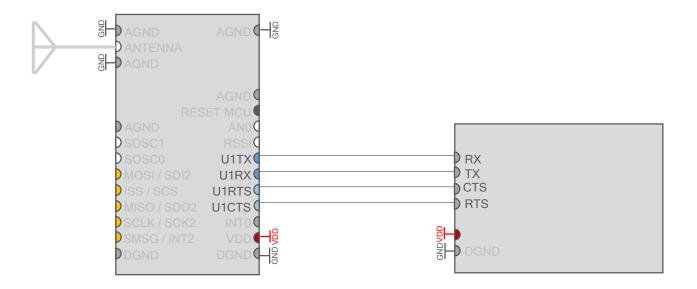
11.1 Sélection


L'interface SPI esclave est automatiquement activée au détriment de l'interface UART si la pin !SS/SCS est à l'état logique 1 (3,3V) lors de l'initialisation (au démarrage ou après avoir quitté le mode commande) du modem.

11.2 Buffers Série

Le module ARM-N8 possède deux buffers indépendants :

- Buffer circulaire de réception de 512 octets
- > Buffer circulaire d'émission de 256 octets


Le buffer de réception est capable de mémoriser le début et la fin de chaque trame finalisée à la fin du transfert de données sur le bus SPI (front montant de !SS) ou UART (après temps mort (Tf) de 3 x temps octet au débit UART utilisé).

Ce mécanisme permet de reproduire le flux de trames sur le modem distant par émissions radio successives.

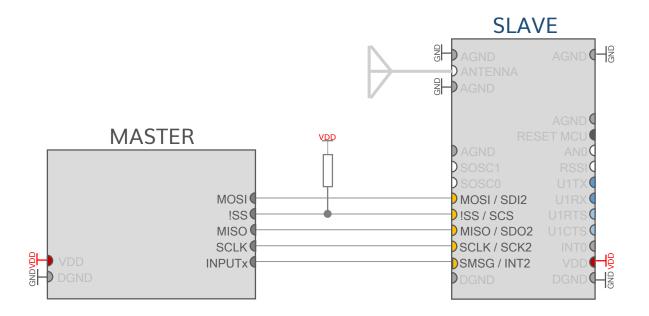
11.3 Mode UART

Les signaux RTS et CTS sont optionnels. Un contrôle de flux logiciel est réalisé du fait de la gestion des trames dans le buffer de réception série (voir 11.2.Buffers Série page 17). Pour 7 bits de données (ATS013=07), la parité doit forcément être activée (ATS014=01 ou 03).

11.3.1Configuration UART (en jaune : par défaut)

ATS	bit	Paramètre	valeur registre
			1200bps=0x00,
			2400bps=0x01,
			4800bps=0x02,
	012 0:7 Baud		9600bps=0x03,
012		0:7 Baudrate UART	19200bps=0x04,
			38400bps=0x05,
			57600bps=0x06,
			115200bps=0x07,
			230400bps=0x08,

ATS	bit	Paramètre	valeur registre
013	0:7	Bits de données UART	7 bits = 0x07 8 bits = 0x08 9 bits = 0x09


		Paramètre			valeur registre
015	0.7	Bits	de	stop	1 bit = 0x01
	0:7	UART			$2 \text{ bits} = 0 \times 02$

ATS	bit	Paramètre	valeur registre
014	0:7	Parité	Aucune = 0x00, 0x02 Impaire = 0x01 Paire = 0x03

valeur registre
Aucun=0x00 RTS/CTS=0x01

11.4 Mode SPI

11.4.1 Configuration Master

	Min.	Тур.	Max.
Fréquence d'horloge SCLK	-	1MHz	2MHz

Polarité d'horloge (Clock polarity / CPOL / CKP):

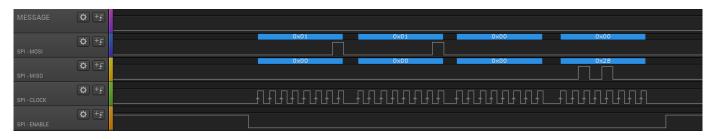
repos à niveau bas ('0' : GND) ; active à niveau haut ('1' : VDD)

Front d'horloge (Clock edge / CKE / NCPHA):

➤ transmission des datas sur transition d'horloge d'active à repos (1⇒0)

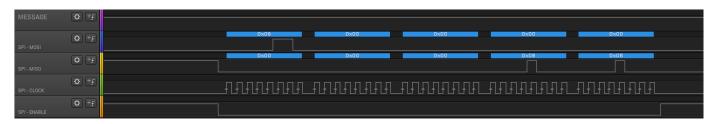
Délais:

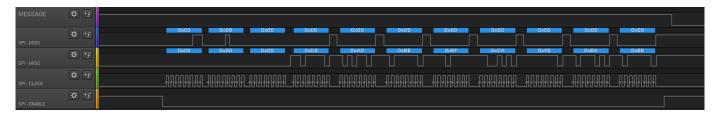
- > L'ARM-N8 lit/analyse séquentiellement, octet par octet, les informations de la trame SPI. Il est recommandé d'observer un délai de 2μs entre chaque octet.
- Afin de finaliser un échange d'informations par SPI, il est recommandé d'observer un délai d'environ 1 ms entre deux opérations SPI (1ms entre front montant de !SS et front descendant de !SS).



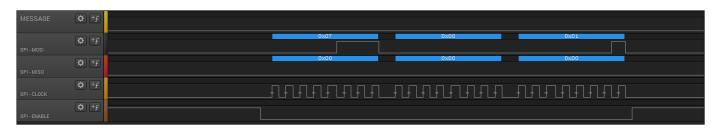
11.4.2Fonctions

	CODE FONCT ION	ADRESSE	DATAS Envoyées par MASTER - Retournées par SLAVE			
FONCTION	Н0	H1	D0	D1	Dn-1	Dn
Lecture registre AT	0x01	0x00 - 0xFF	0x00	retour contenu registre @H1	retour contenu registre @H1+(n-1)	retour contenu registre @H1+(n)
Ecriture registre AT	0x02	0x00 - 0xFF	écriture D0 dans registre @H1	écriture D1 dans registre @H1+1	écriture Dn-1 dans registre @H1+(n-1)	écriture Dn dans registre @H1+(n)
Obtenir octet radio	0x03	Nb octets	0x00	retour contenu FIFO Rx index 1	retour contenu FIFO Rx index n-1	retour contenu FIFO Rx index n
Fournir octet radio	0x04	0x00	écriture contenu FIFO Tx index 0	écriture contenu FIFO Tx index 1	écriture contenu FIFO Tx index n-1	écriture contenu FIFO Tx index n
Obtenir longueur message radio courant	0x06	0x00	0x00	Nombre d'octets contenus dans FIFO Rx	Nombre d'octets contenus dans FIFO Rx	Nombre d'octets contenus dans FIFO Rx
Réinitialisation modem	0x07	0x00	0x00	0x01	0x01	-
Reset modem	0x08	0x00	0x00	0x01	0x01	-


11.4.1Lecture Registre AT


11.4.2 Ecriture Registre AT

11.4.3 Obtenir longueur du message radio courant


11.4.4Obtenir octet contenu dans buffer radio

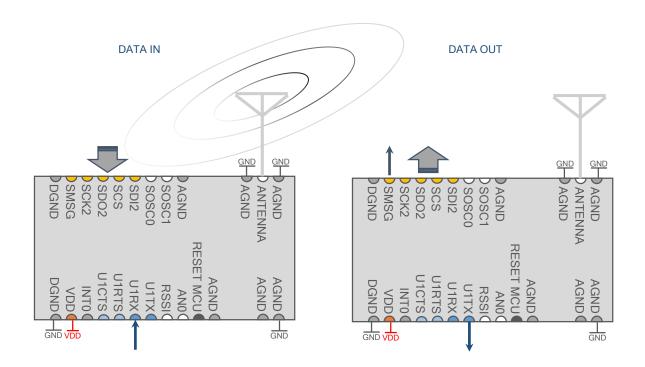
11.4.5 Fournir octets dans buffer radio

11.4.6Réinitialisation

12 Modes de fonctionnement

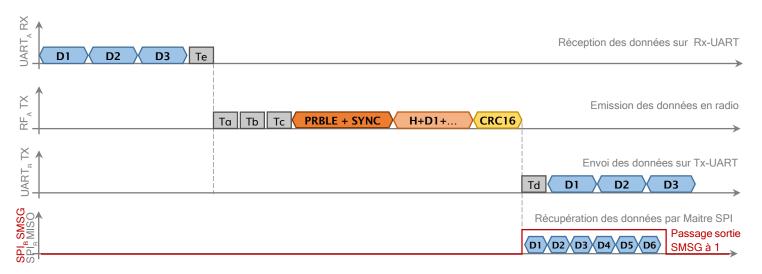
12.1 Transparent (SERIAL/RF BRIDGE)

12.1.1 Paramétrage


Pour activer ce mode, il est nécessaire de paramétrer :

ATS000=10

12.1.2Fonctionnement


Dans ce mode, les données stockées dans le buffer série (sont mises en forme pour être émises en radio. Les transferts d'informations radio se font en half-duplex. Plusieurs paramètres peuvent influencer sur les délais engendrés par le transfert d'informations radio. De manière générale, les délais les plus courts sont obtenus quand un minimum de rétention des données est fait dans les buffers du modem.

Pour minimiser les trous de communication (sur liaison UART en particulier), le débit d'information doit ainsi être le plus similaire possible pour les deux liaisons (série et radio). Malgré cela, la mise en forme des données en radio, l'émission d'une phase de préambule, de synchronisation et le contrôle de début, de fin, ou d'erreur de trame, engendrent inévitablement des délais dans le transfert des données.

12.1.3 Mode packetisé¹ (mode par défaut)

Ta: si activé, Temps 'Listen before talk' 5ms (ATS092.bit0)

Tb : si activé et justifié, Temps pseudo aléatoire 'Listen before talk' après silence radio (ATS092.bit0)

Tc : Temps avant émission Radio (ATS017)

Te : 3 x Temps octet série délimitant un packet

Td: Temps avant émission Série (ATS018-019)

Avantages:

- √ Débits UART différents compatibles
- ✓ Contrôle de trames par CRC16

Inconvénients:

- Longueur trames radio de 120 octets
- * Latence

¹ Le mode packétisé n'est pas compatible avec le mode infini ou compatible.

Configuration mode packet:

Mode packet sans LBT ni AFA

	Mode packet sails Est III Al A					
ATS	bit	Paramètre	valeur registre			
	0	_ListenBeforeTalkEnabled				
	1	_AFAEnabled				
	2	_LongPreamble				
002	3	_WOR_CS	040			
092	4	_NC	0x40			
	5	_NC				
	6	_VariablePacketLength				
	7	_InfinitePacketLength				

Mode packetisation Série / RF

ATS	bit	Paramètre	valeur registre
	0	_AllTraffic	
	1	_TxRF_PacketMode	
	2	_RxRF_PacketMode	
020	3	_NC	0×07
020	4	_NC	0x07
	5	_NC	
	6	_NC	
	7	_NC	

Temps avant émission radio

ATS	bit	Paramètre	valeur registre
017	0:7	Radio_DelayBeforeTx (0 — 255ms)	0×00

Temps avant émission série

ATS	bit	Paramètre	valeur registre
018	0:7	Serial_DelayBeforeTx LSB	0x00
019	0:7	Serial_DelayBeforeTx MSB	0x00

12.2 Sigfox Uplink

Il y a plusieurs manières d'émettre des données sur le réseau Sigfox :

- Commande AT\$SF en mode test
- Mode de fonctionnement « Serial-Bridge »
- Mode de fonctionnement « RF-Bridge »

12.2.1 Format des messages

Les stations de base Sigfox réceptionnent des messages de taille maximale fixée à 12 octets. De ce fait, le modem découpe les messages entrants supérieurs à 12 octets en paquets de 12 octets. L'émetteur envoie à 14dBm chaque message 3 fois sur des canaux aléatoires afin d'assurer la bonne réception par une ou plusieurs stations de base. Les messages sont espacés par un silence de 0,75 seconde. Un message de 12 octets durant 2,1 secondes, une émission complète peut durer jusqu'à 8 secondes.

12.2.2 Envoi de messages par AT\$SF

De base, la liaison UART du modem est configurée comme suit :

19200bps / 8 data bits / 1 stop bit / No parity / None flow control / niveaux logiques LVTTL

Pour entrer en commandes AT (rappel chapitre 8 page 14), il suffit d'entrer +++ consécutivement sans délais. Le modem répond alors ARM-N8 - WELCOME IN SETUP MODE - .

Les informations de révision et d'identification Sigfox sont renvoyées suite à la commande ATV.

Une fois en mode commande AT, l'envoi du message 0123456789AB se fait par :

AT\$SF=0123456789AB,0 et validé par appui sur « Entrée » (CR/LF)

12.2.3Emission de porteuse pure par AT\$CW

Dans le cadre d'une validation RF du modem, il est possible d'émettre une porteuse pure par le biais de :

AT\$CW=86820000,1

Où 868200000 est la fréquence en Hertz de la porteuse et 1 active l'émission alors que 0 la désactive.

12.2.4Envoi de message en fonctionnement « Serial-Bridge »

Ce mode de fonctionnement est actif pour *ATS000=50*. Il opère dès le démarrage du modem (en dehors du mode commande AT) et envoie tous les caractères entrants dans son buffer série vers le réseau Sigfox (voir chapitre 11.Interfaces page 17).

12.2.5Envoi de message en fonctionnement « RF-Bridge »

Ce mode de fonctionnement est actif pour *ATS000=60*. Il se comporte de la même manière que le mode « Serial-Bridge » mais son récepteur radio est actif afin de capter des messages radio en local et les réémettre sur le réseau Sigfox. Les règles de paramétrage radio locale sont mentionnées au chapitre 13.Partie radio page 27.

12.2.6Envoi de message « Mixte »

Ce mode de fonctionnement est actif pour *ATS000=70*. Le modem se comporte d'abord en mode Serial-Bridge vers réseau Sigfox puis il émet le même message vers un réseau local. Les règles de paramétrage radio locale sont mentionnées au chapitre 13.

12.2.7Envoi d'une trame de vie

Une trame de vie contenant « *0x01 Vddldle VddTx 0x64* » peut-être envoyée périodiquement en paramétrant le registre ATS045 comme suit :

Periode émission trame de vie

	The state of the s			
ATS	bit	Paramètre	valeur registre	
045	0:7	0x04 : 10 minutes 0x05 : 1 heure 0x06 : 24 heures 0x07 : 7 jours 0x08 : 1 mois	0x00	

Cet envoi est possible à tout moment même quand le module est en veille.

13 Partie radio

13.1 Paramètres principaux (par défaut : en jaune)

Baudrate Radio

ATS	bit	Paramètre	valeur registre
008	0:7	Paramètre Baudrate radio	valeur registre 1200bps=0x01, 4800bps=0x02, 19200bps=0x03, 57600bps=0x04,

ATS	bit	Paramètre	valeur	valeur registre
002	0:7	Canal radio Tx - Rx LSB	560 canaux de	0A
003	0:7	Canal radio Tx - Rx MSB	863 à 870 MHz	02

Puissance sortie radio échelonnée

Puissance sortie radio explicitée

ATS	bit	Paramètre	valeur registre
			TBD = 0xFF (S062)
			REGUL = 0x00
			0dBm = 0x01
			5dBm = 0x02
			7dBm = 0x03
004	0:7	Pout radio	10dBm = 0x04
			12dBm = 0x05
			14dBm = 0x06
			20dBm=0x07
			23dBm=0x08
			27dBm=0x09

ATS	bit	Paramètre	valeur registre
061	0:7	Pout radio (octet signé) de -18dBm à +27dBm	0x00

13.2 Header

La mise en forme des données en radio comprend les parties suivantes :

- Header long ou court (ATS093.bit 7 : long = 1, court = 0)
- Payload (Taille maxi de 120 octets en mode packetisé)
- Footer (CRC16 en option) (ATS093.bit 6, CRC = 1, No CRC = 0)

Le choix d'un header long ou court permet de privilégier soit le routage des messages radio, soit les délais de transmission.

13.3 Adresses

En mode Header long (bit 7, ATS093), le protocole radio insère des adresses expéditeur et déstinataire(s) dans son en-tête afin d'adresser les trames radio. Ces données permettent aux modems distants (en mode header long) de filtrer ou non les messages.

Paramètres radio 2

ATS	bit	Paramètre	valeur registre
	0	_RxTolerenceLow	
	1	_PADisabled	
	2		
093	3	_CC_CCA	0xC0
093	4		UXCU
	5	_Whitening	
	6	_AttachCRC	
	7	_LongHeader	

Configuration des adresses :

• ATS097: adresse expéditeur • ATS090: adresse destinataire

Adresses radio

ATS	bit	Paramètre	valeur	valeur registre
090	0:7	Adresse déstinataire (modem distant)	0x01 à 0xFF	0xFF
097	0:7	Adresse expéditeur (modem local)	0x00 à 0xFE	0x00

MODEM A	EXP _A	EXP _B	MODEM B
IVIODEIVI A	DEST _A	$DEST_B$	IVIODEIVI B

Règle de filtrage (en réception) du message envoyé par modem A et reçu par modem B :

Message ok = ((EXP_A = EXP_B) OU (EXP_A == 0x00)) ET ((DEST_A == EXP_B) OU (DEST_A == 0xFF))

13.4 Canaux radio

Afin de respecter les règles d'encombrement spectral dans les bandes utiles (863MHz à 870MHz), les canaux sont bornés en fonction de leur bande-passante (baudrate).

La liste exhaustive des canaux est fournie en annexe.

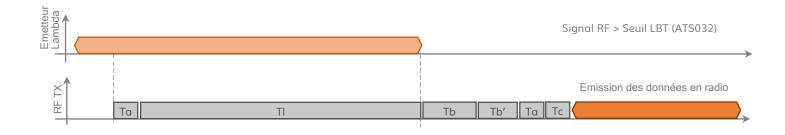
	QUANTITY OF CHANNELS AVAIL				AVAILABL	.E			
Channel	Frequency		1,2		4,8	19,2		57,6	
(hexadecimal)	rrequericy		kbps		kbps	kbps		kbps	
0000	863,0000	NC	NONE		NONE	NONE		NONE	
0001 to 018F	863,0125	14 dBm -	399		399	132		65	
0001 (0 0186	867,9875	25mW	399		399	132		65	
0190	868,0000		NONE		NONE	NONE		NONE	
0191 to 01BF	868,0125	14 dBm -	47		47	14		7	
0191 (0 016)	868,5875	25mW	47		47	14		,	
0100+-0100	868,6000	NC	NONE		NONE	NONE		NONE	
01C0 to 01C8	868,7000	NC	NONE		NONE	NONE		NONE	
01C9 to 01EF	868,7125	14 dBm -	39		39	12		5	
0109 10 01EF	869,1875	25mW	39		39	12		כ	
01F0 to 0200	869,2000	NC	NONE		NONE	NONE		NONE	
0170 (0 0200	869,4000	NC	NONE		NONE	NONE		NONE	
0201 to 0213	869,4125	27 dBm -	19		10	5		3	
0201 to 0213	869,6375	500mW	19		19	ס		3	
0214 to 0218	869,6500	NC	NONE		NONE	NONE		NONE	
0214 to 0218	869,7000	NC	NONE		NONE	NONE		NONE	
0219 to 022F	869,7125	14 dBm -	23		22	6		2	
0219 to 022F	869,9875	25mW	23		23	Ö		3	
QUANTIT	Y OF CHANN	ELS	527		527	169		83	

Tableau 2 : Nombre de canaux disponibles de 863 à 870 MHz

13.5 Whitening

Dans le cas d'une transmission idéale de données en radio, la répartition des données est aléatoire et sans composante continue. La densité spectrale de puissance est alors correctement répartie. Dans la réalité, les données peuvent contenir de longues séquences de zéros et/ou de uns qui peuvent engendrer une perte de synchronisation des horloges entre émetteur et récepteur. La technique du whitening applique un transcodage permettant de réduire ces longues séquences de

bits de même état.


ATS	bit	Paramètre	valeur registre
	0	_RxTolerenceLow	
	1	_PADisabled	
093	2-4	_CC_CCA	C0
093	5	_Whitening	Cu
	6	_AttachCRC	
	7	_LongHeader	

13.6 Listen before talk (LBT)

La technique LBT est principalement conçue pour améliorer l'efficace spectrale radioélectrique allouée de la bande 863-870 MHz. Lorsqu'un modem veut émettre, il écoute le réseau pour définir si une autre émission est déjà en cours (présence ou non d'un signal d'amplitude supérieure ou égale au seuil de détection). Si oui, il attend un temps pseudo-aléatoire compris entre 1 et 5ms puis réécoute, sinon il émet immédiatement.

Les équipements utilisant le LBT ne sont pas limités à une limitation du rapport cyclique. Si LBT n'est pas utilisé, un rapport cyclique doit être appliqué selon la recommandation ERC 70-03 [2].

Ta: Temps 'Listen before talk' 5ms

TI: Durée d'écoute

Tb: Temps pseudo aléatoire 'Listen before talk'

Tb': Temps supplémentaire (ATS056 de 0 à 255ms)

Tc: Temps avant émission Radio restant (ATS017)

Seuil détection porteuse

ATS	bit	Paramètre	valeur registre
032	0:7	Seuil de -127 à 0 dBm (octet signé)	-95dm = 0xA1

Temn	s sun	nlém	entaire	nost	BT
1 CITIP	o oup	DIGITI	Cillane	post	$ \nu$ $_{\rm I}$

ATS	bit	Paramètre	valeur registre
056	0:7	Temps de 0 à 255ms	0x00

Activation LBT

bit	Paramètre	valeur registre	
0	_ListenBeforeTalkEnabled		
1 _AFAEnabled			
2	_LongPreamble	i	
092 3	_WOR_CS	0x40	
4	_NC		
5	_NC		
6	_VariablePacketLength		
7	_InfinitePacketLength		
	0 1 2 3 4 5	0 _ListenBeforeTalkEnabled 1 _AFAEnabled 2 _LongPreamble 3 _WOR_CS 4 _NC 5 _NC 6 _VariablePacketLength	

Le seuil LBT est à entrer en tant que octet signé. Il est recommandé de ne pas descendre sous -105dbm.

Le temps supplémentaire (Tb') permet d'attendre un peu plus avant d'émettre et ne pas perturber une éventuelle réponse au signal de l'émetteur Lambda.

13.7 Adaptative Frequency Agility (AFA)

L'AFA est une technique utilisée pour éviter la transmission dans les canaux qui sont déjà occupés. Si cette fonction est activée, le récepteur scrute en permanence les canaux radio sélectionnés (canal principal et canal secondaire) et utilise le canal inoccupé au moment de l'émission afin d'éviter toute interférence.

Activation AFA

ATS	bit	Paramètre	valeur registre
	0	_ListenBeforeTalkEnabled	
	1	_AFAEnabled	
092 3	2	_LongPreamble	0×40
	3	_WOR_CS	
092	4	_NC	0x40
	5	_NC	
	6	_VariablePacketLength	
	7	_InfinitePacketLength	

Canal radio principal

('anal	radio	second	laira
Cariai	iauio	3660116	uant

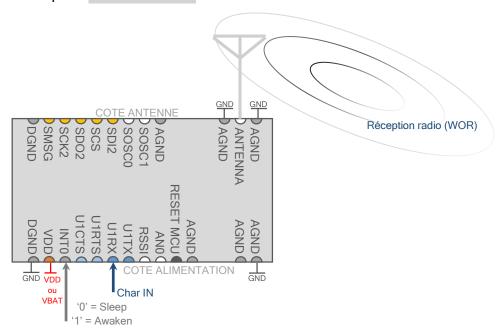
ATS	bit	Paramètre	valeur	valeur registre
002	0:7	Canal radio Tx - Rx LSB	560 canaux de 863 à 870 MHz	02
003	0:7	Canal radio Tx - Rx MSB	560 canaux de 863 à 870 MHz	0A

ATS	bit	Paramètre	valeur	valeur registre
026	0:7	Canal radio Tx - Rx LSB	560 canaux de 863 à 870 MHz	40
027	0:7	Canal radio Tx - Rx MSB	560 canaux de 863 à 870 MHz	00

13.8 Répéteur

Le répéteur est basé sur un fonctionnement avec AFA actif (Répéteur activé -> AFA activé automatiquement). Les canaux scrutés sont utilisés pour transmettre sur le canal secondaire (ATS026-027) les données réceptionnés sur le canal principal (ATS002-003) et inversement.

ATS	bit	Paramètre	valeur registre
	0	_RepeaterEnable	
	1	_NC	
	2	_NC	
069	3	_NC	00
009	4	_NC	00
	5	_NC	
	6	_NC	
	7	_NC	



14 Modes veille

14.1 Sources de réveil / veille

Il existe plusieurs sources de réveil sur le module ARM-Nx :

- 1. Entrée digitale sur pin INTO : maintien d'INTO à 1 (VDD) pendant 1,5ms minimum. Activé pour ATS062 bit7 =1.
- 2. Réception d'un caractère sur Rx UART (sans perte du caractère de réveil pour datarate UART <57600bps). Activé pour ATS062 bit4 = 1.
- 3. Réception de trames sur bus SPI. Actif par défaut si bus SPI utilisé.
- 4. Radio en mode WOR. Actif pour ATS063 bit7 =1.

14.2 Fenêtre de réveil

Le paramètre ATS066 (x10ms) permet d'ouvrir une fenêtre de réveil après traitement série ou radio même si les conditions d'entrée en veille sont remplies.

14.3 Conditions d'entrée et de sortie de veille

Entrée en mode veille =

(INT0==0) && Aucun Traitement Série && Aucun Traitement Radio && Fenêtre de réveil dépassée

Sortie de veille =

(INT0==1) || (RxUART) || Traitement Série || Traitement Radio || Sniff || Fenêtre de réveil active

Traitement série : buffer série non vide

Traitement radio : pas de tâche radio (Tx,Rx,etc.) en cours

Configuration du mode veille :

Sources réveil pins coté ALIMENTATION

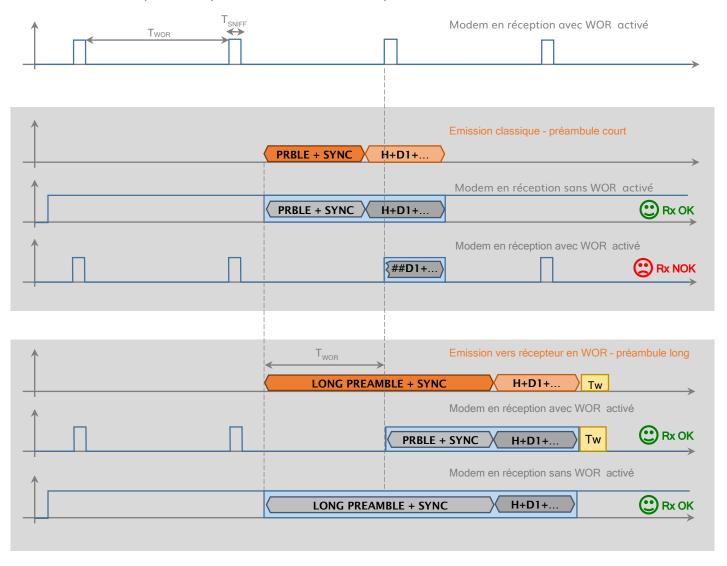
Sources reven pins cote / tenviervi/(11014				
ATS	bit	Paramètre	valeur registre	
	0	_Reset		
	1	_AN0		
	2	_RSSI		
063	3	_U1TX	00	
062	4	_U1RX	00	
	5	_U1RTS		
	6	_U1CTS		
	7	_INT0		

Sources réveil pins coté ANTENNE

ATS	bit	Paramètre	valeur registre
	Ф	SMSG	
	1	_SCK2	
	2	_SDO2	
3	a	_SCS	00
063	4	_SDI2	
	5	_OSC0	
	6	_OSC1	
	7	_RF	

Fenêtre de temps éveil

ATS	bit	Paramètre	valeur registre
066	0:7	Fenêtre de temps en 10 x ms avant retour en veille. Relancé à chaque Rx UART, fin de Tx-Rx Radio,	0x02



15 Réveil par radio (WOR - Wake On Radio)

15.1 Principe de fonctionnement

Dans le but d'optimiser le courant consommé pendant les phases de réception radio, le modem ARM-Nano est capable de se réveiller périodiquement, passer en mode réception durant une courte durée puis repasser en mode veille.

Ce mode de fonctionnement oblige l'émetteur à rallonger la durée de son préambule d'émission afin de tenir compte de la période de réveil du récepteur.

T_{WOR}: période de réveil pour réception radio / écoute. Voir ATS064-ATS065.

T_{SNIFF} : temps de réveil (non paramétrable, dépendant de la méthode de réception en WOR). Voir ATS092 bit3.

Tw : fenêtre de temps post-WOR. Durant cette période le mode WOR est désactivé côté récepteur (pas de retour en veille) ainsi que côté émetteur (pas d'émission à long préambule). Cette fenêtre permet des émissions/réception normales avant retour en mode WOR. Voir ATS066.

NB: Dans le but de faciliter la configuration des modems, le paramètre ATS064-065 définit la période de réveil côté récepteur **et** la durée de préambule supplémentaire côté émetteur. Il suffit ensuite d'activer respectivement long préambule (ATS092 bit2 côté émetteur) et WOR (ATS063 bit7 côté récepteur).

15.2 Méthodes de réception en WOR

Méthode basée sur détection de porteuse modulée (CS - Carrier Sense) (ATS092.bit3=1) : lorsque le modem se réveille pour réceptionner, l'écoute se focalise sur un niveau de signal RF centré à la fréquence du récepteur. Si ce signal dépasse le niveau de détection réglé en ATS032, le modem poursuit son écoute sinon repasse immédiatement en veille.

Avantages: Inconvénients:

✓ Temps d'écoute (T_{SNIFF}) très court (<5ms) **×** Sensible au bruit

Méthode basée sur vérification du préambule (PQT – Preamble Quality Threshold) (ATS092.bit3=0): lorsque le modem se réveille pour réceptionner, l'écoute se focalise sur la détection de préambule d'un signal RF centré à la fréquence du récepteur. Le critère de qualité du préambule n'est pas réglable. Si aucun préambule n'est perçu au-delà d'un certain temps (non réglable), le modem repasse en veille.

Avantages: Inconvénients:

✓ Robustesse aux interférences/bruits
★ Temps d'écoute (T_{SNIFF}) long
(>5ms : dépendant du Baudrate)

15.3 Traitements post-WOR

Les échanges de trames en mode WOR peuvent pénaliser lourdement les temps de latence des systèmes. Afin de minimiser cette latence, la fenêtre post-WOR (ATS066) permet de maintenir le modem en état normal pendant 2,55 secondes maximum (ATS066=FF).

- Côté émetteur l'émission d'un long préambule est désactivée durant cette période (lancée à la fin de l'émission).
- Côté récepteur le modem ne repasse pas en veille et réceptionne les messages radio normalement durant cette période (lancée à la fin de la réception).

La fenêtre post-WOR est ré-ouverte après chacun des évènements suivants :

- Initialisation radio
- Fin de réception ou fin d'émission d'un message radio
- Fin de réception ou fin d'émission d'un octet série

15.4 Evènements de réveil (exemple)

Côté émetteur :

- ✓ Réveil par INT0 : ATS062 bit7 = 1
- ✓ Réveil par Rx UART : ATS062 bit4 = 1
- ✓ Emission long preambule : ATS092 bit2 = 1
- ✓ Temps démission préambule : ATS064-65=0x01F4 (500ms)
- ✓ Fenêtre post-WOR à 100ms : ATS066=0A

Côté récepteur :

- ✓ Réveil par INT0 : ATS062 bit7 = 1
- ✓ Réveil par Rx RF : ATS063 bit7 = 1
- ✓ Méthode WOR-PQT: ATS092 bit3 = 0
- ✓ Période WOR :
 - ATS064-65=0x01F4 (500ms)
- ✓ Fenêtre post-WOR à 100ms : ATS066=0A

Registres de configuration :

Sources réveil pins coté ALIMENTATION

ATS	bit	Paramètre	valeur registre
	0	_Reset	
	1	_AN0	
	2	_RSSI	
062	3	_U1TX	00
062	4	_U1RX	00
	5	_U1RTS	
	6	_U1CTS	
	7	_INT0	

Sources réveil pins coté ANTENNE

ATS	bit	Paramètre	valeur registre
	0	SMSG	
	1	_SCK2	
	2	_SDO2	
063	3	_SCS	00
063	4	_SDI2	00
	5	_OSC0	
	6	_OSC1	
	7	_RF	

Période WOR / Durée préambule supplémentaire

ATS	bit	Paramètre	valeur
064	0:7	Temps en ms. LSB	0xF4
065	0:7	Temps en ms. MSB	0x01

Fenêtre de temps éveil post-WOR

ATS	bit	Paramètre	valeur registre
066	0:7	Fenêtre de temps en 10 x ms avant retour en veille. Relancé à chaque Rx UART, fin de Tx ou Rx Radio,	0x00

Mode WOR

ATS	bit	Paramètre	valeur registre
	0	_ListenBeforeTalkEnabled	
	1	_AFAEnabled	
	2	_LongPreamble	
092	3	_WOR_CS	0×4X
092	4	_NC	UX4X
	5	_NC	
	6	_VariablePacketLength	
	7	_InfinitePacketLength	

16 Signalisations

Il est possible de visualiser certains évènements ou phases de fonctionnement du modem grâce à :

- LED verte sur modem
- Pin RSSI (pin 20 : voir 6.2 Brochage)

LED ON quand Tx ou Rx radio uniquement. LED OFF le reste du temps : ATS025.bit0=1

LED ON en permanence. LED OFF quand Tx ou Rx radio uniquement : ATS025.bit1=1

LED ON au dépassement de seuil RSSI (RSSI>ATS032), LED OFF en dessous du seuil : ATS025.bit6=1

PIN RSSI = 1 quand Réception Radio en cours: ATS025.bit2=1

PIN RSSI = 1 quand Transmission Radio en cours: ATS025.bit3=1

PIN RSSI = 1 quand Transmission Radio observe un temps LBT: ATS025.bit4=1

PIN RSSI = 1 au dépassement de seuil RSSI (RSSI>ATS032), LED OFF sous le seuil: ATS025.bit6=1

ATS	bit	Paramètre	valeur registre
	0	_TxRxLEDON	
	1	_TxRxLEDOFF	
	2	_RxPacket	
025	3	_TxPacket	02
025	4	_CS_LBT	02
	5	_CS_RX	
	6	_CsLEDON	
	7	_NC	

17 Courant mesuré à 3,3V

	MCU		SYSTEM (MCU + RADIO) @ 3,3V / 25°C				
Valeur registre ATS001	PLL	IDLE	SLEEP	IDLE	RX	LED ON	RTC ON
0x28	×	×	1,4μΑ	8,1mA	32mA	+2,3mA	+0,4µA
0x29	×	✓	1,4μΑ	5,7mA	29,5mA	+2,3mA	+0,4µA
0x2C	✓	×	1,4μΑ	17,5mA	40,7mA	+2,3mA	+0,4µA
0x2D	✓	✓	1,4μΑ	9,8mA	33,7mA	+2,3mA	+0,4µA

N	18-LP
RF Pout (dBm)	TX Current (mA) 3,3V / 25°C / LED ON / ATS001=0x28
14	62
13	58
12	55
11	51
10	48
9	46
8	44
7	43
6	41
5	40
4	39
3	37
2	36
1	35,5
0	35
-3	33,5
-6	32
-9	30,5
-12	29,6

18 Optimisation du courant consommé

Plusieurs facteurs impactent le courant consommé par le modem :

- 1. Phases d'émission radio (puissance de sortie ajustable par ATS004)
- 2. Phases de réception radio (ajustable via WOR)
- 3. Activité de la LED (ajustable par ATS025)
- 4. Puissance de calcul (maximale quand PLL activée ATS001, bit2. Quand le bus SPI est utilisé ou pour des datarates UART > 57600bps, la PLL est automatiquement activée)
- 5. Mode de fonctionnement microcontrôleur : quand le processeur n'est pas sollicité il est mis en mode IDLE (ATS001.bit0=1)

Puissance sortie radio échelonnée

ATS	bit	Paramètre	valeur registre
			TBD = 0xFF (voir S062)
			REGUL = 0x00
			0dBm = 0x01
			5dBm = 0x02
			7dBm = 0x03
004	0:7	Pout radio	10dBm = 0x04
			12dBm = 0x05
			14dBm = 0x06
			20dBm=0x07 (LD)
			23dBm=0x08 (LD)
			27dBm=0x09 (LD)

Wake On Radio

ATS	bit	Paramètre	valeur	valeur registre
	0	_ListenBeforeTalkEnabled	Χ	
	1	_AFAEnabled	0	
	2	_LongPreamble	X	
092	3	_WOR_CS	X	xx
092	4	_NC	Χ	^^
	5	_LongPrbleOnly4WakeUp	Χ	
	6	_VariablePacketLength	Χ	
	7	_InfinitePacketLength	X	

Sources réveil pins coté ALIMENTATION

ATS	bit	Paramètre	valeur	valeur registre
	Ф	_Reset	0	
	1	_AN0	0	
	2	_RSSI	Ф	
062	ᠬ	_U1TX	0	VO
062	4	_U1RX	X	X0
	다	_U1RTS	0	
	6	_U1CTS	0	
	7	_INT0	X	

Sources réveil pins coté ANTENNE

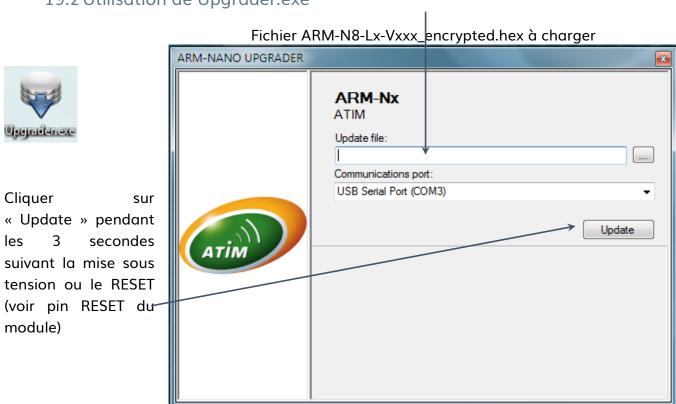
ATS	bit	Paramètre	valeur	valeur registre
	0	_INT2	0	
	1	_SCK2	0	
	2	_SDO2	Φ	
063	ᠬ	_SCS	θ	XX
063	4	_SDI2	θ	^^
	5	_OSCO	Φ	
	6	_OSC1	0	
	7	_RF	Χ	

ATS	bit	Paramètre	valeur	valeur registre		
	0	_ldle	0			
	1	_Sleep	0			
	2	_Force_PLLx4	0			
001	3	_MCU_ExtClock	1	0x28		
001	4	_NC	0	UXZO		
	5	_BOR_Enabled	1			
	6	_NC	0			
	7	_NoExtFlash	0			

Contrôle des périphériques

ATS	bit	Paramètre	valeur	valeur registre
	0	_TxRxLEDON	0	
	1	_TxRxLEDOFF	1	
	2	_RxPacket	0	
025	3	_TxPacket	0	0x02
025	4	_CS_LBT	0	0X02
	5	_CS_RX	0	
	6	_CsLEDON	0	
	7	_NC	0	

19 Mise à jour du firmware par bootloader


19.1 Versions

La version de bootloader est connue grâce au point de couleur sur le microcontrôleur. Le pack de mise à jour est disponible à l'adresse suivante:

http://www.atim.com/download/UPDATE_PACK_ARM-NANO.zip

Mark	Bootloader Version	Encryption	Client Software	Features	BOR Level
•	1	NO	ds30Loader	None	LP_BOR
•	2	YES	ds30SecureLoader / Upgrader	Encryption	2,7V
•	3	YES	ds30SecureLoader / Upgrader	Encryption / Fast boot - No bootloader with CTS='1'	2,7V
•	4	YES	ds30SecureLoader / Upgrader	Encryption / Fast boot - No bootloader with CTS='1'	1,8V

19.2 Utilisation de Upgrader.exe

NB.: Pour les versions de bootloader supérieures à 2, l'exécution du bootloader dépend de l'état, au démarrage, de la pin CTS.

Si CTS = 1 (Vdd) le programme bootloader ne s'exécute pas, permettant au firmware de s'exécuter aussitôt (mode fast-boot).

Si CTS = 0 ou HIGH Z, le programme bootloader s'exécute normalement.

20 Tableau des fréquences

Cho	ınnel	Гиол	1,2	4,8 kbps	19,2	57,6	
dec.	hex.	Freq.	kbps	4,0 KUPS	kbps	kbps	
0	0000	863,0000					
1	0001	863,0125	14dBm	14dBm			
2	0002	863,0250	14dBm	14dBm			
3	0003	863,0375	14dBm	14dBm			
4	0004	863,0500	14dBm	14dBm	14dBm		
5	0005	863,0625	14dBm	14dBm		14dBm	
6	0006	863,0750	14dBm	14dBm		_	
7	0007	863,0875	14dBm	14dBm	14dBm		
8	0008	863,1000	14dBm	14dBm			
9	0009	863,1125	14dBm	14dBm			
10	000A	863,1250	14dBm	14dBm	14dBm		
11	000B	863,1375	14dBm	14dBm		14dBm	
12	000C	863,1500	14dBm	14dBm			
13	000D	863,1625	14dBm	14dBm	14dBm		
14	000E	863,1750	14dBm	14dBm			
15	000F	863,1875	14dBm	14dBm			
16	0010	863,2000	14dBm	14dBm	14dBm		
17	0011	863,2125	14dBm	14dBm		14dBm	
18	0012	863,2250	14dBm	14dBm			
19	0013	863,2375	14dBm	14dBm	14dBm		
20	0014	863,2500	14dBm	14dBm			
21	0015	863,2625	14dBm	14dBm			
22	0016	863,2750	14dBm	14dBm	14dBm		
23	0017	863,2875	14dBm	14dBm		14dBm	
24	0018	863,3000	14dBm	14dBm			
25	0019	863,3125	14dBm	14dBm	14dBm		
26	001A	863,3250	14dBm	14dBm			
27	001B	863,3375	14dBm	14dBm			
28	001C	863,3500	14dBm	14dBm	 14dBm	 	
29	001D	863,3625	14dBm	 14dBm		 14dBm	
30	001E	863,3750	14dBm	 14dBm			
31	001F	863,3875	14dBm	14dBm	 14dBm		
32	0020	863,4000	14dBm	 14dBm		 	
33	0021	863,4125	14dBm	14dBm			
34	0022	863,4250	14dBm	14dBm	 14dBm		
35	0023	863,4375	14dBm	14dBm		14dBm	
36	0024	863,4500	14dBm	14dBm			
37	0025	863,4625	14dBm	14dBm	14dBm		
38	0026	863,4750	14dBm	14dBm			
39	0027	863,4875	14dBm	14dBm			
40	0028	863,5000	14dBm	14dBm	14dBm		

Cho	ınnel		1,2			19,2	57,6	
	1	Freq.	kbps	Z	1,8 kbps	kbps	kbps	
dec.	hex.							
41	0029	863,5125	14dBm		14dBm		14dBm	
42	002A	863,5250	14dBm		14dBm			
43	002B	863,5375	14dBm		14dBm	14dBm		
44	002C	863,5500	14dBm		14dBm			
45	002D	863,5625	14dBm		14dBm			
46	002E	863,5750	14dBm		14dBm	14dBm		
47	002F	863,5875	14dBm		14dBm		14dBm	
48	0030	863,6000	14dBm		14dBm			
49	0031	863,6125	14dBm		14dBm	14dBm		
50	0032	863,6250	14dBm		14dBm			
51	0033	863,6375	14dBm		14dBm			
52	0034	863,6500	14dBm		14dBm	14dBm		
53	0035	863,6625	14dBm		14dBm		14dBm	
54	0036	863,6750	14dBm		14dBm			
55	0037	863,6875	14dBm		14dBm	14dBm		
56	0038	863,7000	14dBm		14dBm			
57	0039	863,7125	14dBm		14dBm			
58	003A	863,7250	14dBm		14dBm	14dBm		
59	003B	863,7375	14dBm		14dBm		14dBm	
60	003C	863,7500	14dBm		14dBm			
61	003D	863,7625	14dBm		14dBm	14dBm		
62	003E	863,7750	14dBm		14dBm			
63	003F	863,7875	14dBm		14dBm			
64	0040	863,8000	14dBm		14dBm	14dBm		
65	0041	863,8125	14dBm		14dBm		14dBm	
66	0042	863,8250	14dBm		14dBm			
67	0043	863,8375	14dBm		14dBm	14dBm		
68	0044	863,8500	14dBm		14dBm			
69	0045	863,8625	14dBm		14dBm			
70	0046	863,8750	14dBm		14dBm	14dBm		
71	0047	863,8875	14dBm		14dBm	 	 14dBm	
72	0048	863,9000	14dBm		14dBm	 	 	
73	0049	863,9125	14dBm		14dBm	14dBm		
74	004A	863,9250	14dBm		14dBm			
75	004B	863,9375	14dBm		14dBm			
76	004C	863,9500	14dBm		14dBm	14dBm		
77	004D	863,9625	14dBm		14dBm		14dBm	
78	004E	863,9750	14dBm		14dBm			
79	004F	863,9875	14dBm		14dBm	14dBm		
80	0050	864,0000	14dBm		14dBm			
81	0051	864,0125	14dBm		14dBm			
82	0052	864,0250	14dBm		14dBm	14dBm		
83	0053	864,0375	14dBm		14dBm		14dBm	

Chc	annel	Eroa	1,2	4,8 kbps	19,2	57,6	
dec.	hex.	Freq.	kbps	4,0 Kbp3	kbps	kbps	
84	0054	864,0500	14dBm	14dBm			
85	0055	864,0625	14dBm	14dBm	14dBm		
86	0056	864,0750	14dBm	14dBm	1100111		
87	0057	864,0875	14dBm	14dBm			
88	0058	864,1000	14dBm	14dBm	14dBm		
89	0059	864,1125	14dBm	14dBm		14dBm	
90	005A	864,1250	14dBm	14dBm			
91	005B	864,1375	14dBm	14dBm	14dBm		
92	005C	864,1500	14dBm	14dBm			
93	005D	864,1625	14dBm	14dBm			
94	005E	864,1750	14dBm	14dBm	14dBm		
95	005F	864,1875	14dBm	14dBm		14dBm	
96	0060	864,2000	14dBm	 14dBm	 	 	
97	0061	864,2125	14dBm	14dBm	14dBm		
98	0062	864,2250	14dBm	14dBm			
99	0063	864,2375	14dBm	14dBm			
100	0064	864,2500	14dBm	14dBm	14dBm		
101	0065	864,2625	14dBm	14dBm		14dBm	
102	0066	864,2750	14dBm	14dBm			
103	0067	864,2875	14dBm	14dBm	14dBm		
104	0068	864,3000	14dBm	14dBm			
105	0069	864,3125	14dBm	14dBm			
106	006A	864,3250	14dBm	14dBm	14dBm		
107	006B	864,3375	14dBm	14dBm		14dBm	
108	006C	864,3500	14dBm	14dBm			
109	006D	864,3625	14dBm	14dBm	14dBm		
110	006E	864,3750	14dBm	14dBm			
111	006F	864,3875	14dBm	14dBm			
112	0070	864,4000	14dBm	14dBm	14dBm		
113	0071	864,4125	14dBm	14dBm		14dBm	
114	0072	864,4250	14dBm	14dBm			
115	0073	864,4375	14dBm	14dBm	14dBm		
116	0074	864,4500	14dBm	14dBm			
117	0075	864,4625	14dBm	14dBm			
118	0076	864,4750	14dBm	14dBm	14dBm		
119	0077	864,4875	14dBm	14dBm		14dBm	
120	0078	864,5000	14dBm	14dBm	4.6.1-		
121	0079	864,5125	14dBm	14dBm	14dBm		
122	007A	864,5250	14dBm	14dBm			
123	007B	864,5375	14dBm	14dBm	44.15		
124	007C	864,5500	14dBm	14dBm	14dBm	4445	
125	007D	864,5625	14dBm	14dBm		14dBm	
126	007E	864,5750	14dBm	14dBm			

Chc	annel	_	1,2	4.0.1.	19,2	57,6	
dec.	hex.	Freq.	kbps	4,8 kbps	kbps	kbps	
127	007F	864,5875	14dBm	14dBm	14dBm		
128	0080	864,6000	14dBm	14dBm	1400111		
129	0081	864,6125	14dBm	14dBm			
130	0082	864,6250	14dBm	14dBm	14dBm		
131	0083	864,6375	14dBm	14dBm	1400111	14dBm	
132	0084	864,6500	14dBm	14dBm		1100111	
133	0085	864,6625	14dBm	14dBm	14dBm		
134	0086	864,6750	14dBm	14dBm			
135	0087	864,6875	14dBm	14dBm			
136	0088	864,7000	14dBm	14dBm	14dBm		
137	0089	864,7125	14dBm	14dBm		14dBm	
138	A800	864,7250	14dBm	14dBm			
139	008B	864,7375	14dBm	14dBm	14dBm		
140	008C	864,7500	14dBm	14dBm			
141	008D	864,7625	14dBm	14dBm			
142	008E	864,7750	14dBm	14dBm	14dBm		
143	008F	864,7875	14dBm	14dBm		14dBm	
144	0090	864,8000	14dBm	14dBm			
145	0091	864,8125	14dBm	14dBm	14dBm		
146	0092	864,8250	14dBm	14dBm			
147	0093	864,8375	14dBm	14dBm			
148	0094	864,8500	14dBm	14dBm	14dBm		
149	0095	864,8625	14dBm	14dBm		14dBm	
150	0096	864,8750	14dBm	14dBm			
151	0097	864,8875	14dBm	14dBm	14dBm		
152	0098	864,9000	14dBm	14dBm			
153	0099	864,9125	14dBm	14dBm			
154	009A	864,9250	14dBm	14dBm	14dBm		
155	009B	864,9375	14dBm	14dBm		14dBm	
156	009C	864,9500	14dBm	14dBm			
157	009D	864,9625	14dBm	14dBm	14dBm		
158	009E	864,9750	14dBm	14dBm			
159	009F	864,9875	14dBm	14dBm			
160	00A0	865,0000	14dBm	14dBm	14dBm		
161	00A1	865,0125	14dBm	14dBm		14dBm	
162	00A2	865,0250	14dBm	14dBm			
163	00A3	865,0375	14dBm	14dBm	14dBm		
164	00A4	865,0500	14dBm	14dBm			
165	00A5	865,0625	14dBm	14dBm			
166	00A6	865,0750	14dBm	14dBm	14dBm		
167	00A7	865,0875	14dBm	14dBm		14dBm	
168	00A8	865,1000	14dBm	14dBm			
169	00A9	865,1125	14dBm	14dBm	14dBm		

Cho	innel	Freq.	1,2 kbps	4	,8 kbps	19,2 kbps	57,6 kbps	
dec.	hex.		Корз			Rops	Корз	
170	00AA	865,1250	14dBm		14dBm			
171	00AB	865,1375	14dBm		14dBm			
172	00AC	865,1500	14dBm	,	14dBm	14dBm		
173	00AD	865,1625	14dBm		14dBm		14dBm	
174	00AE	865,1750	14dBm		14dBm			
175	00AF	865,1875	14dBm		14dBm	14dBm		
176	00B0	865,2000	14dBm		14dBm			
177	00B1	865,2125	14dBm		14dBm			
178	00B2	865,2250	14dBm		14dBm	14dBm		
179	00B3	865,2375	14dBm		14dBm		14dBm	
180	00B4	865,2500	14dBm		14dBm			
181	00B5	865,2625	14dBm		14dBm	14dBm		
182	00B6	865,2750	14dBm		14dBm			
183	00B7	865,2875	14dBm		14dBm			
184	00B8	865,3000	14dBm		14dBm	14dBm		
185	00B9	865,3125	14dBm		14dBm		14dBm	
186	00BA	865,3250	14dBm		14dBm			
187	00BB	865,3375	14dBm		14dBm	14dBm		
188	00BC	865,3500	14dBm		14dBm			
189	00BD	865,3625	14dBm		14dBm			
190	00BE	865,3750	14dBm		14dBm	14dBm		
191	00BF	865,3875	14dBm		14dBm		14dBm	
192	00C0	865,4000	14dBm		14dBm			
193	00C1	865,4125	14dBm		14dBm	14dBm		
194	00C2	865,4250	14dBm		14dBm			
195	00C3	865,4375	14dBm		14dBm			
196	00C4	865,4500	14dBm		14dBm	14dBm		
197	00C5	865,4625	14dBm		14dBm		14dBm	
198	00C6	865,4750	14dBm		14dBm			
199	00C7	865,4875	14dBm	,	14dBm	14dBm		
200	00C8	865,5000	14dBm	:	14dBm			
201	00C9	865,5125	14dBm		14dBm			
202	00CA	865,5250	14dBm		14dBm	14dBm		
203	00CB	865,5375	14dBm		14dBm		14dBm	
204	00CC	865,5500	14dBm		14dBm			
205	00CD	865,5625	14dBm		14dBm	14dBm		
206	00CE	865,5750	14dBm		14dBm			
207	00CF	865,5875	14dBm		14dBm			
208	00D0	865,6000	14dBm		14dBm	14dBm		
209	00D1	865,6125	14dBm		14dBm		14dBm	
210	00D2	865,6250	14dBm		14dBm			
211	00D3	865,6375	14dBm		14dBm	14dBm		
212	00D4	865,6500	14dBm		14dBm			

Cho	annel	Гили	1,2	4,8 kbps	19,2	57,6	
dec.	hex.	Freq.	kbps	4,0 KUPS	kbps	kbps	
213	00D5	865,6625	14dBm	14dBm			
214	00D6	865,6750	14dBm	14dBm	14dBm		
215	00D7	865,6875	14dBm	14dBm	1400111	14dBm	
216	00D8	865,7000	14dBm	14dBm		1100111	
217	00D9	865,7125	14dBm	14dBm	14dBm		
218	00DA	865,7250	14dBm	14dBm			
219	00DB	865,7375	14dBm	14dBm			
220	00DC	865,7500	14dBm	14dBm	14dBm		
221	00DD	865,7625	14dBm	14dBm		14dBm	
222	00DE	865,7750	14dBm	14dBm			
223	00DF	865,7875	14dBm	14dBm	14dBm		
224	00E0	865,8000	14dBm	14dBm			
225	00E1	865,8125	14dBm	 14dBm			
226	00E2	865,8250	14dBm	14dBm	14dBm		
227	00E3	865,8375	14dBm	14dBm		14dBm	
228	00E4	865,8500	14dBm	14dBm			
229	00E5	865,8625	14dBm	14dBm	14dBm		
230	00E6	865,8750	14dBm	14dBm			
231	00E7	865,8875	14dBm	14dBm			
232	00E8	865,9000	14dBm	14dBm	14dBm		
233	00E9	865,9125	14dBm	14dBm		14dBm	
234	00EA	865,9250	14dBm	14dBm			
235	00EB	865,9375	14dBm	14dBm	14dBm		
236	00EC	865,9500	14dBm	14dBm			
237	00ED	865,9625	14dBm	14dBm			
238	00EE	865,9750	14dBm	14dBm	14dBm		
239	00EF	865,9875	14dBm	14dBm		14dBm	
240	00F0	866,0000	14dBm	14dBm			
241	00F1	866,0125	14dBm	14dBm	14dBm		
242	00F2	866,0250	14dBm	14dBm			
243	00F3	866,0375	14dBm	14dBm			
244	00F4	866,0500	14dBm	14dBm	14dBm		
245	00F5	866,0625	14dBm	14dBm		14dBm	
246	00F6	866,0750	14dBm	14dBm			
247	00F7	866,0875	14dBm	14dBm	14dBm		
248	00F8	866,1000	14dBm	14dBm			
249	00F9	866,1125	14dBm	14dBm			
250	00FA	866,1250	14dBm	14dBm	14dBm		
251	00FB	866,1375	14dBm	14dBm		14dBm	
252	00FC	866,1500	14dBm	14dBm			
253	00FD	866,1625	14dBm	14dBm	14dBm		
254	00FE	866,1750	14dBm	14dBm			
255	00FF	866,1875	14dBm	14dBm			

Cho	annel	Freq.	1,2 kbps	4,8 kbps	19,2 kbps	57,6 kbps	
dec.	hex.		Kups		Kups	kuhs	
256	0100	866,2000	14dBm	14dBm	14dBm		
257	0101	866,2125	14dBm	14dBm		14dBm	
258	0102	866,2250	14dBm	14dBm			
259	0103	866,2375	14dBm	14dBm	14dBm		
260	0104	866,2500	14dBm	14dBm			
261	0105	866,2625	14dBm	14dBm			
262	0106	866,2750	14dBm	14dBm	14dBm		
263	0107	866,2875	14dBm	14dBm		14dBm	
264	0108	866,3000	14dBm	14dBm			
265	0109	866,3125	14dBm	14dBm	14dBm		
266	010A	866,3250	14dBm	14dBm			
267	010B	866,3375	14dBm	14dBm			
268	010C	866,3500	14dBm	14dBm	14dBm		
269	010D	866,3625	14dBm	14dBm		14dBm	
270	010E	866,3750	14dBm	14dBm			
271	010F	866,3875	14dBm	14dBm	14dBm		
272	0110	866,4000	14dBm	14dBm			
273	0111	866,4125	14dBm	14dBm			
274	0112	866,4250	14dBm	14dBm	14dBm		
275	0113	866,4375	14dBm	14dBm		14dBm	
276	0114	866,4500	14dBm	14dBm			
277	0115	866,4625	14dBm	14dBm	14dBm		
278	0116	866,4750	14dBm	14dBm			
279	0117	866,4875	14dBm	14dBm			
280	0118	866,5000	14dBm	14dBm	14dBm		
281	0119	866,5125	14dBm	14dBm		14dBm	
282	011A	866,5250	14dBm	14dBm			
283	011B	866,5375	14dBm	14dBm	14dBm		
284	011C	866,5500	14dBm	14dBm			
285	011D	866,5625	14dBm	14dBm			
286	011E	866,5750	14dBm	14dBm	14dBm		
287	011F	866,5875	14dBm	14dBm		14dBm	
288	0120	866,6000	14dBm	14dBm			
289	0121	866,6125	14dBm	14dBm	14dBm		
290	0122	866,6250	14dBm	14dBm			
291	0123	866,6375	14dBm	14dBm			
292	0124	866,6500	14dBm	14dBm	14dBm		
293	0125	866,6625	14dBm	14dBm		14dBm	
294	0126	866,6750	14dBm	14dBm			
295	0127	866,6875	14dBm	14dBm	14dBm		
296	0128	866,7000	14dBm	14dBm			
297	0129	866,7125	14dBm	14dBm			
298	012A	866,7250	14dBm	14dBm	14dBm		

Cho	annel	Freq.	1,2 kbps	4,8 kbp	5	19,2 kbps	57,6 kbps	
dec.	hex.		Корз			Корз	Корз	
299	012B	866,7375	14dBm	14dBm			14dBm	
300	012C	866,7500	14dBm	14dBm				
301	012D	866,7625	14dBm	14dBm		14dBm		
302	012E	866,7750	14dBm	14dBm				
303	012F	866,7875	14dBm	14dBm				
304	0130	866,8000	14dBm	14dBm		14dBm		
305	0131	866,8125	14dBm	14dBm			14dBm	
306	0132	866,8250	14dBm	14dBm				
307	0133	866,8375	14dBm	14dBm		14dBm		
308	0134	866,8500	14dBm	14dBm				
309	0135	866,8625	14dBm	14dBm				
310	0136	866,8750	14dBm	14dBm		14dBm		
311	0137	866,8875	14dBm	14dBm			14dBm	
312	0138	866,9000	14dBm	14dBm				
313	0139	866,9125	14dBm	14dBm		14dBm		
314	013A	866,9250	14dBm	14dBm				
315	013B	866,9375	14dBm	14dBm				
316	013C	866,9500	14dBm	14dBm		14dBm		
317	013D	866,9625	14dBm	14dBm			14dBm	
318	013E	866,9750	14dBm	14dBm				
319	013F	866,9875	14dBm	14dBm		14dBm		
320	0140	867,0000	14dBm	14dBm				
321	0141	867,0125	14dBm	14dBm				
322	0142	867,0250	14dBm	14dBm		14dBm		
323	0143	867,0375	14dBm	14dBm			14dBm	
324	0144	867,0500	14dBm	14dBm				
325	0145	867,0625	14dBm	14dBm		14dBm		
326	0146	867,0750	14dBm	14dBm				
327	0147	867,0875	14dBm	14dBm				
328	0148	867,1000	14dBm	14dBm		14dBm		
329	0149	867,1125	14dBm	14dBm			14dBm	
330	014A	867,1250	14dBm	14dBm				
331	014B	867,1375	14dBm	14dBm		14dBm		
332	014C	867,1500	14dBm	14dBm				
333	014D	867,1625	14dBm	14dBm				
334	014E	867,1750	14dBm	14dBm	+	14dBm		
335	014F	867,1875	14dBm	14dBm			14dBm	
336	0150	867,2000	14dBm	14dBm				
337	0151	867,2125	14dBm	14dBm		14dBm		
338	0152	867,2250	14dBm	14dBm				
339	0153	867,2375	14dBm	14dBm	1			
340	0154	867,2500	14dBm	14dBm		14dBm		
341	0155	867,2625	14dBm	14dBm			14dBm	

Cho	ınnel	Freq.	1,2 kbps	4,8 kk	pps	19,2 kbps	57,6 kbps	
dec.	hex.					Поро		
342	0156	867,2750	14dBm	14dE	Sm .			
343	0157	867,2875	14dBm	14dE	8m	14dBm		
344	0158	867,3000	14dBm	14dE	3m			
345	0159	867,3125	14dBm	14dE	3m			
346	015A	867,3250	14dBm	14dE	8m	14dBm		
347	015B	867,3375	14dBm	14dE	8m		14dBm	
348	015C	867,3500	14dBm	14dE	8m			
349	015D	867,3625	14dBm	14dE	8m	14dBm		
350	015E	867,3750	14dBm	14dE	3m			
351	015F	867,3875	14dBm	14dE	8m			
352	0160	867,4000	14dBm	14dE	8m	14dBm		
353	0161	867,4125	14dBm	14dE	3m		14dBm	
354	0162	867,4250	14dBm	14dE	3m			
355	0163	867,4375	14dBm	14dE	8m	14dBm		
356	0164	867,4500	14dBm	14dE	3m			
357	0165	867,4625	14dBm	14dE	8m			
358	0166	867,4750	14dBm	14dE	3m	14dBm		
359	0167	867,4875	14dBm	14dE	3m		14dBm	
360	0168	867,5000	14dBm	14dE	3m			
361	0169	867,5125	14dBm	14dE	8m	14dBm		
362	016A	867,5250	14dBm	14dE	3m			
363	016B	867,5375	14dBm	14dE	8m			
364	016C	867,5500	14dBm	14dE	8m	14dBm		
365	016D	867,5625	14dBm	14dE	Sm		14dBm	
366	016E	867,5750	14dBm	14dE	Sm			
367	016F	867,5875	14dBm	14dE	8m	14dBm		
368	0170	867,6000	14dBm	14dE	8m			
369	0171	867,6125	14dBm	14dE	Bm			
370	0172	867,6250	14dBm	14dE	Bm	14dBm		
371	0173	867,6375	14dBm	14dE	3m		14dBm	
372	0174	867,6500	14dBm	14dE	3m			
373	0175	867,6625	14dBm	14dE	3m	14dBm		
374	0176	867,6750	14dBm	14dE	3m			
375	0177	867,6875	14dBm	14dE	3m			
376	0178	867,7000	14dBm	14dE	3m	14dBm		
377	0179	867,7125	14dBm	14dE	3m		14dBm	
378	017A	867,7250	14dBm	14dE	Sm			
379	017B	867,7375	14dBm	14dE	Sm	14dBm		
380	017C	867,7500	14dBm	14dE	Sm			
381	017D	867,7625	14dBm	14dE	3m			
382	017E	867,7750	14dBm	14dE	3m	14dBm		
383	017F	867,7875	14dBm	14dE	Sm		14dBm	
384	0180	867,8000	14dBm	14dE	8m			

Cha	ınnel	Freq.	1,2 kbps	4,	8 kbps	19,2 kbps	57,6 kbps	
dec.	hex.		Коро			Коро	Коро	
385	0181	867,8125	14dBm	1	4dBm	14dBm		
386	0182	867,8250	14dBm	1	4dBm			
387	0183	867,8375	14dBm	1	4dBm			
388	0184	867,8500	14dBm	1	4dBm	14dBm		
389	0185	867,8625	14dBm	1	4dBm		14dBm	
390	0186	867,8750	14dBm	1	4dBm			
391	0187	867,8875	14dBm	1	4dBm	14dBm		
392	0188	867,9000	14dBm	1	4dBm			
393	0189	867,9125	14dBm	1	4dBm			
394	018A	867,9250	14dBm	1	4dBm	14dBm		
395	018B	867,9375	14dBm	1	4dBm		14dBm	
396	018C	867,9500	14dBm	1	4dBm			
397	018D	867,9625	14dBm	1	4dBm	14dBm		
398	018E	867,9750	14dBm	1	4dBm			
399	018F	867,9875	14dBm	1	4dBm			
400	0190	868,0000	14dBm	1	4dBm	14dBm		
401	0191	868,0125	14dBm	1	4dBm		14dBm	
402	0192	868,0250	14dBm	1	4dBm			
403	0193	868,0375	14dBm		4dBm	14dBm		
404	0194	868,0500	14dBm	1	4dBm			
405	0195	868,0625	14dBm	1	4dBm			
406	0196	868,0750	14dBm	1	4dBm	14dBm		
407	0197	868,0875	14dBm	1	4dBm		14dBm	
408	0198	868,1000	14dBm		4dBm			
409	0199	868,1125	14dBm		4dBm	14dBm		
410	019A	868,1250	14dBm		4dBm			
411	019B	868,1375	14dBm		4dBm			
412	019C	868,1500	14dBm		4dBm	14dBm		
413	019D	868,1625	14dBm		4dBm	-	14dBm	
414	019E	868,1750	14dBm		4dBm			
415	019F	868,1875	14dBm		4dBm	14dBm		
416	01A0	868,2000	14dBm	-	4dBm			
417	01A1	868,2125	14dBm		4dBm			
418	01A2	868,2250	14dBm		4dBm	14dBm		
419	01A3	868,2375	14dBm		4dBm		14dBm	
420	01A4	868,2500	14dBm		4dBm			
421	01A5	868,2625	14dBm		4dBm	14dBm		
422	01A6	868,2750	14dBm		4dBm			
423	01A7	868,2875	14dBm		4dBm			
424	01A8	868,3000	14dBm		4dBm	14dBm		
425	01A9	868,3125	14dBm		4dBm		14dBm	
426	01AA	868,3250	14dBm		4dBm			
427	01AB	868,3375	14dBm		4dBm	14dBm		

Cho	innel	Freq.	1,2 kbps	 4,8 kbps	19,2 kbps	57,6 kbps	
dec.	hex.		Корз		Rops	Корз	
428	01AC	868,3500	14dBm	14dBm			
429	01AD	868,3625	14dBm	14dBm			
430	01AE	868,3750	14dBm	14dBm	14dBm		
431	01AF	868,3875	14dBm	14dBm		14dBm	
432	01B0	868,4000	14dBm	14dBm			
433	01B1	868,4125	14dBm	14dBm	14dBm		
434	01B2	868,4250	14dBm	14dBm			
435	01B3	868,4375	14dBm	14dBm			
436	01B4	868,4500	14dBm	14dBm	14dBm		
437	01B5	868,4625	14dBm	14dBm		14dBm	
438	01B6	868,4750	14dBm	14dBm			
439	01B7	868,4875	14dBm	14dBm	14dBm		
440	01B8	868,5000	14dBm	14dBm			
441	01B9	868,5125	14dBm	14dBm			
442	01BA	868,5250	14dBm	14dBm	14dBm		
443	01BB	868,5375	14dBm	14dBm		14dBm	
444	01BC	868,5500	14dBm	14dBm			
445	01BD	868,5625	14dBm	14dBm	14dBm		
446	01BE	868,5750	14dBm	14dBm			
447	01BF	868,5875	14dBm	14dBm			
448	01C0	868,6000	14dBm	14dBm	14dBm		
449	01C1	868,6125	14dBm	14dBm		14dBm	
450	01C2	868,6250	14dBm	14dBm			
451	01C3	868,6375	14dBm	14dBm	14dBm		
452	01C4	868,6500	14dBm	14dBm			
453	01C5	868,6625	14dBm	14dBm			
454	01C6	868,6750	14dBm	14dBm	14dBm		
455	01C7	868,6875	14dBm	14dBm		14dBm	
456	01C8	868,7000	14dBm	14dBm			
457	01C9	868,7125	14dBm	14dBm	14dBm		
458	01CA	868,7250	14dBm	14dBm			
459	01CB	868,7375	14dBm	14dBm			
460	01CC	868,7500	14dBm	14dBm	14dBm		
461	01CD	868,7625	14dBm	14dBm		14dBm	
462	01CE	868,7750	14dBm	14dBm			
463	01CF	868,7875	14dBm	14dBm	14dBm		
464	01D0	868,8000	14dBm	14dBm			
465	01D1	868,8125	14dBm	14dBm			
466	01D2	868,8250	14dBm	14dBm	14dBm		
467	01D3	868,8375	14dBm	14dBm		14dBm	
468	01D4	868,8500	14dBm	14dBm			
469	01D5	868,8625	14dBm	14dBm	14dBm		
470	01D6	868,8750	14dBm	14dBm			

Cho	annel	Freq.	1,2 kbps	4,8 kbps	19,2 kbps	57,6 kbps	
dec.	hex.		корз		κυμο	Kups	
471	01D7	868,8875	14dBm	14dBm			
472	01D8	868,9000	14dBm	14dBm	14dBm		
473	01D9	868,9125	14dBm	14dBm		14dBm	
474	01DA	868,9250	14dBm	14dBm			
475	01DB	868,9375	14dBm	14dBm	14dBm		
476	01DC	868,9500	14dBm	14dBm			
477	01DD	868,9625	14dBm	14dBm			
478	01DE	868,9750	14dBm	14dBm	14dBm		
479	01DF	868,9875	14dBm	14dBm		14dBm	
480	01E0	869,0000	14dBm	14dBm			
481	01E1	869,0125	14dBm	14dBm	14dBm		
482	01E2	869,0250	14dBm	14dBm			
483	01E3	869,0375	14dBm	14dBm			
484	01E4	869,0500	14dBm	14dBm	14dBm		
485	01E5	869,0625	14dBm	14dBm		14dBm	
486	01E6	869,0750	14dBm	14dBm			
487	01E7	869,0875	14dBm	14dBm	14dBm		
488	01E8	869,1000	14dBm	14dBm			
489	01E9	869,1125	14dBm	14dBm			
490	01EA	869,1250	14dBm	14dBm	14dBm		
491	01EB	869,1375	14dBm	14dBm		14dBm	
492	01EC	869,1500	14dBm	14dBm			
493	01ED	869,1625	14dBm	14dBm	14dBm		
494	01EE	869,1750	14dBm	14dBm			
495	01EF	869,1875	14dBm	14dBm			
496	01F0	869,2000	14dBm	14dBm	14dBm		
497	01F1	869,2125	14dBm	14dBm		14dBm	
498	01F2	869,2250	14dBm	14dBm			
499	01F3	869,2375	14dBm	14dBm	14dBm		
500	01F4	869,2500	14dBm	14dBm			
501	01F5	869,2625	14dBm	14dBm			
502	01F6	869,2750	14dBm	14dBm	14dBm		
503	01F7	869,2875	14dBm	14dBm		14dBm	
504	01F8	869,3000	14dBm	14dBm			
505	01F9	869,3125	14dBm	14dBm	14dBm		
506	01FA	869,3250	14dBm	14dBm			
507	01FB	869,3375	14dBm	14dBm			
508	01FC	869,3500	14dBm	14dBm	14dBm		
509	01FD	869,3625	14dBm	14dBm			
510	01FE	869,3750	14dBm	14dBm			
511	01FF	869,3875	14dBm	14dBm			
512	0200	869,4000					
513	0201	869,4125	21dBm	21dBm			

Cho	ınnel	Freq.	1,2 kbps	4,8 kbps	19,2 kbps	57,6 kbps	
dec.	hex.		κορο		κορσ	Корз	
514	0202	869,4250	21dBm	21dBm			
515	0203	869,4375	23dBm	23dBm			
516	0204	869,4500	23dBm	23dBm	23dBm		
517	0205	869,4625	27dBm	27dBm		27dBm	
518	0206	869,4750	27dBm	27dBm			
519	0207	869,4875	27dBm	27dBm	27dBm		
520	0208	869,5000	27dBm	27dBm			
521	0209	869,5125	27dBm	27dBm			
522	020A	869,5250	27dBm	27dBm	27dBm	27dBm	
523	020B	869,5375	27dBm	27dBm			
524	020C	869,5500	27dBm	27dBm			
525	020D	869,5625	27dBm	27dBm	27dBm		
526	020E	869,5750	27dBm	27dBm			
527	020F	869,5875	27dBm	27dBm		27dBm	
528	0210	869,6000	23dBm	23dBm	23dBm		
529	0211	869,6125	23dBm	23dBm			
530	0212	869,6250	21dBm	21dBm			
531	0213	869,6375	21dBm	21dBm			
532	0214	869,6500					
533	0215	869,6625	14dBm	14dBm			
534	0216	869,6750	14dBm	14dBm			
535	0217	869,6875	14dBm	14dBm			
536	0218	869,7000	14dBm	14dBm	14dBm		
537	0219	869,7125	14dBm	14dBm		14dBm	
538	021A	869,7250	14dBm	14dBm			
539	021B	869,7375	14dBm	14dBm	14dBm		
540	021C	869,7500	14dBm	14dBm			
541	021D	869,7625	14dBm	14dBm			
542	021E	869,7750	14dBm	14dBm	14dBm		
543	021F	869,7875	14dBm	14dBm		14dBm	
544	0220	869,8000	14dBm	14dBm			
545	0221	869,8125	14dBm	14dBm	14dBm		
546	0222	869,8250	14dBm	14dBm			
547	0223	869,8375	14dBm	 14dBm			
548	0224	869,8500	14dBm	14dBm	14dBm		
549	0225	869,8625	14dBm	 14dBm		 14dBm	
550	0226	869,8750	14dBm	14dBm			
551	0227	869,8875	14dBm	14dBm	14dBm		
552	0228	869,9000	14dBm	 14dBm			
553	0229	869,9125	14dBm	 14dBm			
554	022A	869,9250	14dBm	 14dBm	 14dBm		
555	022B	869,9375	14dBm	 14dBm	 	 14dBm	
556	022C	869,9500	14dBm	14dBm			

Cho	ınnel	Freq.	1,2 kbps	4,8 kbps	19,2 kbps	57,6 kbps	
dec.	hex.		kups		Knh2	Knh2	
557	022D	869,9625	14dBm	14dBm	14dBm		
558	022E	869,9750	14dBm	14dBm			
559	022F	869,9875	14dBm	14dBm			
560	0230	870,0000					

21 Tableau des registres AT

REGISTER	DESIGNATION	DESIGNATION VALUES	DEFAULT VALUES	READ /WRITE
\$000	Application1	OPERATING_MODE_UART2RF_BRIDGE = 0x10, OPERATING_MODE_MODBUS_MASTER_ONLY = 0x20, OPERATING_MODE_MODBUS_SLAVE_ONLY = 0x40, OPERATING_MODE_UART2SFX_BRIDGE = 0x50, OPERATING_MODE_UART_AND_RF_TO_SFX_BRIDGE = 0x60, OPERATING_MODE_PINGPONG_MASTER_INIT = 0x00, OPERATING_MODE_PINGPONG_SLAVE_INIT = 0x01, OPERATING_MODE_SPECTRUM_ANALYSER_INIT = 0x0A, OPERATING_MODE_PURE_CARRIER_INIT = 0x04, OPERATING_MODE_CONTINUOUS_RECEPTION_INIT = 0x02, OPERATING_MODE_RANDOM_MODULATED_CARRIER_INIT = 0x07, OPERATING_MODE_INFINITE_RDM_MODULATED_CARRIER_INIT = 0x08,	xx	R/W
S001	Application2		0x28	R
S002	Radio_ARM_Channel LSB		0x0A	R/W
S003	Radio_ARM_Channel MSB	- 1- 560	0x02	R/W
S004	Radio_OutputPowerEmission	RADIO_OUTPUT_POWER_IS_TBD = 0xFF, RADIO_OUTPUT_POWER_IS_REGULATORY_LIMIT = 0x00, RADIO_OUTPUT_POWER_IS_0dBm = 0x01, RADIO_OUTPUT_POWER_IS_5dBm = 0x02, RADIO_OUTPUT_POWER_IS_7dBm = 0x03, RADIO_OUTPUT_POWER_IS_10dBm = 0x04, RADIO_OUTPUT_POWER_IS_12dBm = 0x05, RADIO_OUTPUT_POWER_IS_14dBm = 0x06, RADIO_OUTPUT_POWER_IS_20dBm = 0x07, RADIO_OUTPUT_POWER_IS_20dBm = 0x07, RADIO_OUTPUT_POWER_IS_23dBm = 0x08, RADIO_OUTPUT_POWER_IS_27dBm = 0x09,	0x00	
S005	SecureMode_DestAddrLSB		0x44	NC
S006	SecureMode_DestAddrMSB		0x44	NC
S007	SecureMode_LocalAddr		0x55	NC
S008	Radio_Application1	RADIO_BAUDRATE_UNDEFINED = 0xFF, RADIO_BAUDRATE_R100_DBPSK = 0x00, //Sigfox RADIO_BAUDRATE_R1200_2GFSK = 0x01, //NB RADIO_BAUDRATE_R4800_4GFSK = 0x02, //NB RADIO_BAUDRATE_R19200_4GFSK = 0x03, //WB RADIO_BAUDRATE_R57600_4GFSK = 0x04, //WB	0x01	R/W
S009	Radio_Tests		0x00	NC
S010	SecureMode_RepeaterAddrLSB		0x77	NC
S011 S012	SecureMode_RepeaterAddrMSB Serial_Baudrate	SERIAL BAUDRATE 1200=0x00,	0x77 0x04	NC R/W
	- Strain _ S	SERIAL_BAUDRATE_1200=0x00, SERIAL_BAUDRATE_4800=0x02, SERIAL_BAUDRATE_9600=0x03, SERIAL_BAUDRATE_19200=0x04, SERIAL_BAUDRATE_38400=0x05, SERIAL_BAUDRATE_57600=0x06, SERIAL_BAUDRATE_115200=0x07, SERIAL_BAUDRATE_230400=0x08,	0.07	
S013	Serial_Databit	DATABITS_7=0x07, DATABITS_8=0x08,	0x08	R/W

S014	Serial_Parity	PARITY_ODD_DISABLE=0x00, PARITY_ODD_ENABLE=0x01, PARITY_EVEN_DISABLE=0x02, PARITY_EVEN_ENABLE=0x03,	0x02	R/W
S015	Serial_Stopbit	STOPBIT_1=0x01, STOPBIT_2=0x02,	0x01	R/W
S016	Serial_FlowControl	FLOWCONTROL_NONE=0x00, FLOWCONTROL_CTSRTSBUFFERMODE=0x01, -FLOWCONTROL_RTS1=0x02, -FLOWCONTROL_RTS0=0x03, -FLOWCONTROL_CTSRTSCMDLED=0x04, -FLOWCONTROL_CTSRTSRADIOMODE=0x05, -FLOWCONTROL_OUTCMDRS485=0x06,	0x00	R/W
S017	Radio_DelayBeforeTX	0 - 255 ms	0x00	R/W
S018	Serial_DelayAfterTxSerialLSB		0x00	R/W
S019	Serial_DelayAfterTxSerialMSB		0x00	R/W
S020	Bridge_Settings	unsigned char _AllTrafic:1; unsigned char _TxRF_PacketMode:1; unsigned char _RxRF_PacketMode:1; unsigned char _undefined:5;	0x07	R/W
S021	SecureMode_WaitingTimeBase		0x0	NC
S022	SecureMode_TxRetry		0x0	NC
S023	Radio_DelayAfterTx	0 - 255 ms	0x00	R/W
S024	SleepMode_DelayBeforeSleep		0x0	NC
S025	OnBoardDevices	unsigned char _TxRxLEDON unsigned char _TxRxLEDOFF unsigned char _RxPacket unsigned char _TxPacket unsigned char _CS_LBT unsigned char _CS_RX unsigned char _CSLEDON unsigned char _CS_PWM	0x02	R/W
S026	Radio_ARM_BackUpChannel LSB	1- 560	0x40	R/W
S027	Radio_ARM_BackUpChannel MSB		0x00	R/W
S028	Application9		0x0	NC
S029	Application8		0x0	NC
S030	Application5		0x0	NC
S031	Bridge_DelayWaitForReceive		0x0	NC
S032	Radio_RSSILevel	-95	0xA1	R/W
S033	Misc_DelayToAcceptCommandMode		0x0	NC
S034	Application3		0x0	NC
S035	Application4		0x0	NC
S036	Bridge_TimeOutRadioReception		0x0	NC
S037	Radio_EncryptionKeyCode1		0x0	NC
S038	Radio_EncryptionKeyCode2		0x0	NC
S039	Radio_EncryptionKeyCode3		0x0	NC
S040 S041	Application6		0x0	NC NC
S041 S042	Radio_PreambleCode Application7		0x0 0x0	NC NC
S042 S043	TestMode_DelayLSB		0xF0	NC
S043	TestMode_DelayMSB		0xF0	NC NC
S044 S045	undefined08		0x00	NC
S046	SecureMode_AsciiCodeACK		0x00	NC
S046 S047	SecureMode_AsciiCodeNACK		0x0	NC
S047 S048	undefined09		0x0 0x10	NC NC

S049	TestMode_RadioControl	1	0x0	l nc
S050	TestMode_TxDelay		0x0	NC
S051	TestMode_RxDelay		0x0	NC
S052	Radio TimeOutNoRxLSB		0x00	NC
S053	Radio TimeOutNoRxMSB		0x00	NC
S054	Serial_RS485ReturnTime		0x00	NC
S055	Serial Mode		0x01	NC
S056	Radio_LBTDelayBeforeCarrierSense		0x0	NC
S057	Radio_LBTThresholdCarrierSense		0x0	NC
S058	Radio_TxPreamble		0x0	NC
S059	Radio_RxPreamble		0x0	NC
S060	Radio_LOCKCounter		0x0	NC
S061	Radio_UserGain		0x00	R/W
S062	WakeUpSourcePWR	unsigned char 22 RESET :1;	0x00	R/W
		unsigned char _21_AN0 :1; unsigned char _20_RSSI :1; unsigned char _19_U1TX :1; unsigned char _18_U1RX :1; unsigned char _17_U1RTS :1; unsigned char _16_U1RCTS :1; unsigned char _15_INTO :1;		
S063	WakeUpSourceRF	unsigned char11_RA6:1; -unsigned char10_SCK2:1; -unsigned char09_SD02:1; -unsigned char08_SCS:1; -unsigned char07_SD12:1; -unsigned char06_OSCO:1; -unsigned char05_OSCI:1; -unsigned char05_OSCI:1; -unsigned charNC:1;	0x00	R/W
S064	SleepMode_SleepTimeLSB		0xF4	NC
S065	SleepMode_SleepTimeMSB		0x01	NC
S066	SleepMode_DelayBeforeGoBackSleep	Window awaken in ms	0x01	R/W
S067	undefined14		0x02	NC
S068	Radio_RepeaterChannelEmission		0x04	NC
S069	RepeatMode_Settings	unsigned char _Enabled:1; unsigned char _undefined:7;	0x00	NC
S070	RepeatMode_LocalAddr		0x0	NC
S071	RepeatMode_DestAddr		0x0	NC
S072		unsigned short int Window:5;		
S073	RRC_Types[0]	unsigned short int MinLevel:4; unsigned short int MaxLevel:4; unsigned short int TxFirstRxLast:1; unsigned short int RandomLevel:1; unsigned short int Enabled:1;	0x00	R/W
S074 S075	RRC_Types[1]	unsigned short int Window:5; unsigned short int MinLevel:4; unsigned short int MaxLevel:4; unsigned short int TxFirstRxLast:1; unsigned short int RandomLevel:1; unsigned short int Enabled:1;	0x00	R/W
S076 S077	RRC_Types[2]	unsigned short int Window:5; unsigned short int MinLevel:4; unsigned short int MaxLevel:4; unsigned short int TxFirstRxLast:1;	0x00	R/W

S078	RRC_Settings	unsigned char _Enabled :1; unsigned char _MasterMode :1; unsigned char _SlaveMode :1; unsigned char _TXOnTxTypeA :1; unsigned char _TXOnTxTypeB :1; unsigned char _TXOnTxTypeC :1; unsigned char _RefreshSettings:1; unsigned char _LimitedLevel :1;	0xFF	R/W
S079	RRC_Undefined		0xFF	R/W
S080	RRC_PushTime		0xFF	R/W
S081	Serial_ReturnTimeTxToRx		0x00	NC
S082	ModbusTimeoutLSB		0xF4	R/W
S083	ModbusTimeoutMSB		0x01	R/W
S084	PBI_TLED_On			R/W
S085	Modbus_MyAddress		0xF0	R/W
S086	MyMACAddressMSB		0x12	R
S087	MyMACAddressUSB		0x34	R
S088	MyMACAddressLSB		0x56	R
S089	Modbus_DestAddress		0x02	R/W
S090	Radio_DestModemAddress		0xFF	R/W
S091	Radio_Chip0Settings		0x00	R/W
S092	Radio_Chip1Settings	unsigned long _LBT :1; unsigned long _AFA :1; unsigned long _LongPreamble :1; unsigned long _WOR_CS:1; unsigned long _FilterChipAdress :1; unsigned long _LongPreambleOnly4WakeUp :1; unsigned long _VariablePacketLength :1; unsigned long _InfinitePacketLength :1;	0x40	R/W
S093	Radio_Chip1Settings	unsigned long _RxTolerenceLow :1; unsigned long _PADisabled :1; unsigned long _CCA : 3; unsigned long _Whitening: 1; unsigned long _AttachCRC :1; unsigned long _LongHeader :1;	0xC0	R/W
S094	Radio_Chip1Settings	unsigned long _SyncBytes :3; unsigned long _AttachHeader :1; unsigned long _PreambleBytes :4;	0x0D	R/W
S095	Radio_Chip1Settings	unsigned long _PreambleCode :8;	0x60	R/W
S096	Radio_AddGain		0x00	R/W
S097	Radio_ModemAddress		0x00	R/W
			101	
S098	VersionCodeLSB		XX	R

22 Historique du document

Révision	Auteur	Date	Remarques
V1.0	ML	17/05/2014	Initial revision
V1.4	ML	13/05/2014	WOR mode, nouveau tableau des
			fréquences
V1.5	ML	25/11/2015	Déclaration de conformité, Mode SPI,
			Mode répéteur, Signalisations
V1.6	ML	02/12/2015	Sigfox Uplink
V1.7	ML	07/12/2015	Titre du document. Traitements post-
V1.8	ML	05/02/2016	WOR.
			Correction parité UART. RSSI-PWM
			indisponible sur modems Sigfox.
V1.9	TDX	30/03/2016	Quelques corrections RF et
			consommations
V2.0	ML	20/07/2016	Documentation unique pour build
			N8-Sigfox. Les valeurs des registres
			AT correspondants aux débits radio
			changent.

